个人介绍
经典力学

主讲教师:赵亚溥

教师团队:共1

  • 赵亚溥
课程介绍
本课程的参考书主要为科学出版社出版的《力学讲义》。课程针对国科大特别是 A 班的教学特点,在借鉴和吸收朗道、栗弗席兹理论物理教程中的第一卷《力学》突出优点的基础上,结合近年来相关的重大科学进展,又适当地增加了一些新的内容进行讲解。
本课程的主体内容包括:牛顿力学、拉格朗日力学、哈密顿力学、连续介质和非线性力学初步、生命力学初步、相对论和量子力学初步等内容。本课程将启人心智的 “思想实验” 和 “类比”、发人深省的科学典故以及鲜活生动的学科前沿巧妙、生动地结合在一起,在教学改革方面做了深入探索。
教师团队

赵亚溥

职称:教授

单位:中国科学院大学

经典力学框架和发展路线图

牛顿力学

牛顿力学属于经典力学范畴,是以质点作为研究对象,着眼于力的作用关系,在处理质点系统问题时,强调分别考虑各个质点所受的力,然后来推断整个质点系统的运动状态;牛顿力学认为质量和能量各自独立存在,且各自守恒;它只适用于物体运动的惯性参照系;牛顿力学较多采用直观的几何方法,在解决简单的力学问题时,比分析力学方便简单。

牛顿力学(Newtonianmechanics)以牛顿运动定律和万有引力定律(见万有引力)为基础,研究速度远小于光速的宏观物体的运动规律。狭义相对论研究速度能与光速比拟的物体的运动,量子力学研究电子、质子等微观粒子的运动。从研究的范畴来说,牛顿力学同相对论和量子力学相区别,牛顿力学是经典力学的组成部分。继I.牛顿以后,J.-L.拉格朗日和W.R.哈密顿相继发展了新的力学体系。牛顿力学所着重的量如力、动量等都具有矢量性质,而且牛顿方程是用矢量形式表达的,故牛顿力学可称为矢量力学;拉格朗日体系和哈密顿体系所着重的量是系统的能,它具有标量的性质,可以通过力学的变分原理建立系统的动力学方程,故拉格朗日体系和哈密顿体系等可统称为分析力学。因此,从力学的研究方法和体系来说,牛顿力学同拉格朗日体系和哈密顿体系相区别;但从经典力学的基本原理来说,拉格朗日方程和哈密顿原理同牛顿定律是等价的。然而,哈密顿原理能应用于较广泛的物理现象。将拉格朗日体系和哈密顿体系(尤其是后者)应用于物理学和天体力学中广泛出现的保守系统,有极大的优点。例如,这两个体系的观点和方法对天体力学的摄动理论和经典统计力学的理论性研究有较大价值。

拉格朗日力学

拉格朗日力学,分析力学中的一种,由拉格朗日在1788年建立,是对经典力学的一种的新的数学表述。经典力学,最初的表述形式由牛顿建立,它着重分析位移,速度,加速度,力等矢量间的关系,又称为矢量力学。拉格朗日引入了广义坐标的概念,运用达朗贝尔原理,得到和牛顿第二定律等价的拉格朗日方程。但拉格朗日方程具有更普遍的意义,适用范围更广泛。并且,选取恰当的广义坐标,可以使拉格朗日方程的求解大大简化。

拉格朗日力学是分析力学中的一种,于1788年由约瑟夫·拉格朗日所创立。拉格朗日力学是对经典力学的一种的新的理论表述,着重于数学解析的方法,是分析力学的重要组成部分。

力学系统由一组坐标来描述。比如一个质点的运动(在笛卡尔坐标系中)由x,y,z三个坐标来描述。一般的,N个质点组成的力学系统由3N个坐标来描述。力学系统中常常存在着各种约束,使得这3N个坐标并不都是独立的。力学系统的独立坐标的个数称之为自由度。对于N个质点组成的力学系统,若存在m个约束,则系统的自由度为

S = 3N − m

哈密尔顿量H可以通过对拉格朗日量进行勒让德变换得到。哈密尔顿量是经典力学的另一种表述哈密尔顿力学的基础。拉格朗日量可以视为定义在所有广义坐标可能值组成的组态空间的切丛上的函数,而哈密尔顿量是相对应的余切丛上的函数。哈密尔顿量在量子力学中到处出现(参看哈密尔顿量 (量子力学))。

1948年, 费曼发明了路径积分表述,将最小作用原理扩展到量子力学。在该表述中,粒子穿过所有可能的始态和终态的所有路径;特定终态的概率是所有可能导向它的轨迹的概率之和。在经典力学的范围,路径积分表述简单的退化为哈密尔顿原理。

哈密顿力学

哈密顿力学是哈密顿于1833年建立的经典力学的重新表述,它由拉格朗日力学演变而来。拉格朗日力学是经典力学的另一表述,由拉格朗日于1788年建立。哈密顿力学与拉格朗日力学不同的是前者可以使用辛空间而不依赖于拉格朗日力学表述。 

适合用哈密顿力学表述的动力系统称为哈密顿系统。

任何辛流形上的光滑实值函数可以用来定义一个哈密顿系统。函数H称为哈密顿量或者能量函数。该辛流形则称为相空间。哈密顿量在辛流形上导出一个特殊的矢量场,称为辛矢量场。

该辛矢量场,称为哈密顿矢量场,导出一个流形上的哈密顿流。该矢量场的一个积分曲线是一个流形的变换的单参数族;该曲线的参数通常称为时间。该时间的演变由辛同胚给出。根据刘维尔定理每个辛同胚保持相空间的体积形式不变。由哈密顿流导出的辛同胚的族通常称为哈密顿系统的哈密顿力学

哈密顿矢量场也导出一个特殊的操作,泊松括号。泊松括号作用于辛流形上的函数,给了流形上的函数空间一个李代数的结构。特别的有,给定一个函数f

若我们有一个概率分布ρ,则(因为相空间速度(  )有0散度,而概率是不变的)其传达导数(convective derivative)可以证明为0,所以

这称为刘维尔定理。每个辛流形上的光滑函数G产生一个单参数辛同胚族,而若{G,H} = 0,则G是守恒的,而该辛同胚是对称变换。

哈密顿矢量场的可积性是未解决的问题。通常,哈密顿系统是混沌的;测度,完备性,可积性和稳定性的概念没有良好的定义。迄今为止,动力系统的研究主要是定性的,而非定量的科学。

开普勒定律

开普勒定律是德国天文学家开普勒提出的关于行星运动的三大定律。第一和第二定律发表于1609年,是开普勒从天文学家第谷观测火星位置所得资料中总结出来的;第三定律发表于1619年。这三大定律又分别称为椭圆定律、面积定律和调和定律。

①椭圆定律所有行星绕太阳的轨道都是椭圆,太阳在椭圆的一个焦点上。

②面积定律行星和太阳的连线在相等的时间间隔内扫过相等的面积。

③调和定律所有行星绕太阳一周的恒星时间( )的平方与它们轨道长半轴(ai)的立方成比例,即  。

此后,学者们把第一定律修改成为:所有行星(和彗星)的轨道都属于圆锥曲线,而太阳则在它们的一个焦点上。第二定律只在行星质量比太阳质量小得多的情况下才是精确的。如果考虑到行星也吸引太阳,这便是一个二体问题。经过修正后的第三定律的精确公式为:

   (式中m1和m2为两个行星的质量;ma为太阳的质量)。

物理世界的统一

• 牛顿的力学和万有引力定律,是物理学上第一次大的统一。

  打破了亚里士多德的“天界(celestial,神界,月上)”和“世俗(terrestrial,月下)”的界限,“万有”就是强调这种统一。

• 麦克斯韦建立了电磁理论,使电、磁、光得到统一:电动力学

• 爱因斯坦抛弃了绝对空间的概念,使电磁学、力学在新的时空观的基础上达到了协调和统一。

• 爱因斯坦的广义相对论是能与电磁理论相协调的引力理论。

• 重整化方法使量子力学和电磁理论得到统一:量子电动力学。

• 四种基本相互作用:强、电磁、弱、引力,仍然不够统一。

• 温伯格、萨拉姆和格拉肖的弱电统一理论,1979年诺贝尔奖。

• 大统一理论:电磁-弱相互作用-强相互作用。

• 超统一:将引力和其它作用统一起来 (超弦?)

启发爱因斯坦的五个思想实验

追光:

       爱因斯坦推断到,如果你通过某些方法追上一束光,你就会看到光在空间中被冻结了。但是光不可能在空间中被冻结了,否则它就不是光了。

       最终爱因斯坦意识到,光不可能放慢自己的脚步,而且必须总是光速远离他。所以,必须有其它的东西改变了。那是什么改变了呢?爱因斯坦意识到是时间本身改变了,正是意识到时间并不是绝对的,才使爱因斯坦为狭义相对论的建立奠定了基础。

列车:

       现在想象一下你正坐在一列很长的火车上,而你的好友在火车外跟你挥手道别。突然,有闪电击中了车头(A点)和车尾 (B点),你的好友在正好处于火车的中间点 (M)并同时看到了雷击。现在的问题是,对于你好友来说是同时的两个事件,对于你来说是否也是同时的呢?答案必然是否定的。

       实际上,坐在火车中的你正在朝着来自 A 的光线急速前进,而远离 B 点,因此你将先看到来自 A 的光线,后看见来自 B 发出的光线。

       这个思想实验向我们展示了对于运动中的观测者和静止中的观测者来说,时间的流逝是不一样的。爱因斯坦认为时间和空间都是相对的,这也是狭义相对论的基石。

孪生子:

       这个思想实验也跟时间的流逝有关。想象你有一个双胞胎,跟你几乎是同时间出生的。但是在你的双胞胎出生的那一刻,他或她就被转移到了一架太空飞船,并且立即发射,以接近光的速度在宇宙中航行。

       根据爱因斯坦的狭义相对论,你和你的双胞胎的年纪将会大大的不同。由于接近光速中的时间流逝的更慢,因此你的双胞胎会比你年轻的多。

       当太空飞船回到地球上时,你早已经退休了,但你的双胞胎才刚要步入青春期。

电梯:

       想象你正在远离任何引力场的空间中悬浮在一个电梯内,并且无法知道在电梯以外发生的事情。突然,你就掉落在地板上。此刻,发生了什么呢?你会认为是电梯被引力拉下来了吗?还是觉得电梯正往上加速?

       事实上,这两种效应会产生同样的结果。这使爱因斯坦宣告:在空间的一个足够小的区域,一个观察者感知的引力场的物理效应和另一个在没有引力场的地方以均匀加速运动的观察者感知的物理效应相同。换句话说,加速度可以“骗”你,让你觉得是在引力场中。

       回想一下爱因斯坦之前的结论:时间和空间并不是绝对的。如果运动可以影响时间和空间,而引力和加速度又是同一回事,这也意味着引力也可以影响时间和空间。

        物质告诉时空如何弯曲,时空告诉物质如何运动。这就是广义相对论。

鬼魅:

        爱因斯坦是量子力学的教父之一,但是他并不满意量子力学的描述,认为理论不够完备。因此他经常想出一些思想实验来反驳量子理论。但也正是因为他的这些思想实验不断地挑战了开创量子力学的物理学家们才使得量子理论逐渐地完善。

        其中一个思想实验跟“量子纠缠”有关,爱因斯坦称之为“鬼魅般地超距作用”。

想象一下你有一枚两面的硬币,并且可以轻易的被分为两半。你往上掷骰子,在不看结果前,把其中的一半给你的朋友,并且自己保留另一半。现在,你的朋友带着另一半硬币坐上宇宙飞船远离地球。

       现在你再看你手中的那半枚硬币。你看到你手中的硬币是正面的,你就立即可以知道在千万光年外的朋友手中的那半枚是反面的。

       现在你假设这些硬币的状态是不确定的,直到你观测之前,正面和反面会不断的交换。但是,一旦你知道了其中一枚的状态 (正面或反面),即使两枚硬币相隔的多么远,你也可以打破光速的限制,瞬时知道另一枚硬币的状态。

参考教材




课程评价

课程章节
3
第二章 牛顿力学与思想实验
提示框
提示框
确定要报名此课程吗?
确定取消

京ICP备10040544号-2

京公网安备 11010802021885号