经典力学

赵亚溥

目录

  • 1 预备课 数学知识
    • 1.1 0.1 行列式、矢量的代数运算(一)
    • 1.2 0.2 行列式、矢量的代数运算(二)
    • 1.3 0.3 行列式、矢量的代数运算(三)
    • 1.4 0.4 行列式、矢量的代数运算(四)
    • 1.5 0.5 一元函数的微积分(上)
    • 1.6 0.6 一元函数的微积分(中)
    • 1.7 0.7 一元函数的微积分(下)
    • 1.8 0.8 多元函数的微积分(一)
    • 1.9 0.9 多元函数的微积分(二)
    • 1.10 0.10 多元函数的微积分(三)
    • 1.11 0.11 多元函数的微积分(四)
  • 2 第一章 经典力学概览
    • 2.1 1.1 经典力学——牛顿力学、拉格朗日力学、哈密顿力学
    • 2.2 1.2 经典力学的三个组成部分以及所联系的空间(上)
    • 2.3 1.3 经典力学的三个组成部分以及所联系的空间(下)
    • 2.4 1.4 直线运动 (Rectilinear Motion)
    • 2.5 1.5 平面曲线运动 (Curvilinear Motion)
    • 2.6 1.6 引力波介绍(上)
    • 2.7 1.7 引力波介绍(下)
    • 2.8 1.8 经典力学和几何光学之间的类比性
    • 2.9 1.9 一般曲线运动
    • 2.10 1.10 佯谬
    • 2.11 1.11 最小作用量原理(上)
    • 2.12 1.12 最小作用量原理(中)
    • 2.13 1.13 最小作用量原理(下)
    • 2.14 1.14 何谓经典力学?
    • 2.15 1.15 经典力学和几何光学之间的类比性,最小作用量原理
    • 2.16 1.16 黎曼度规张量与非欧几何简介(Lamé常数)
  • 3 第二章 牛顿力学与思想实验
    • 3.1 2.1 托里拆利小号佯谬
    • 3.2 2.2 思想实验: 镞矢之疾、飞矢不动、芝诺佯谬
    • 3.3 2.3 思想实验:伽利略相对性原理(一)
    • 3.4 2.4 思想实验:伽利略相对性原理(二)
    • 3.5 2.5 思想实验:伽利略相对性原理(三)
    • 3.6 2.6 思想实验:伽利略相对性原理(四)
    • 3.7 2.7 开普勒三大行星定律(上)
    • 3.8 2.8 开普勒三大行星定律(中)
    • 3.9 2.9 开普勒三大行星定律(下)
    • 3.10 2.10 Laplace-Runge-Lenz (LRL) 矢量
    • 3.11 2.11 牛顿的《自然哲学的数学原理》和三大运动定律(上)
    • 3.12 2.12 牛顿的《自然哲学的数学原理》和三大运动定律(中)
    • 3.13 2.13 牛顿的《自然哲学的数学原理》和三大运动定律(下)
    • 3.14 2.14 三体问题的由来和新进展
    • 3.15 2.15 平方反比定律(上)
    • 3.16 2.16 平方反比定律(下)
    • 3.17 2.17 牛顿壳层定理、地球内外的引力势(上)
    • 3.18 2.18 牛顿壳层定理、地球内外的引力势(下)
    • 3.19 2.19 转动中的力学(一)
    • 3.20 2.20 转动中的力学(二)
    • 3.21 2.21 转动中的力学(三)
    • 3.22 2.22 转动中的力学(四)
    • 3.23 2.23 爱因斯坦的电梯思想实验
    • 3.24 2.24 惯性质量、引力质量与等效原理(上)
    • 3.25 2.25 惯性质量、引力质量与等效原理(下)
    • 3.26 2.26 应用汤川势对平方反比定律的修正
    • 3.27 2.27 惯性张量表达式的推导(上)
    • 3.28 2.28 惯性张量表达式的推导(下)
    • 3.29 2.29 朗道《力学》选讲
    • 3.30 2.30 牛顿的水桶思想实验
    • 3.31 2.31 马赫原理
    • 3.32 2.32 爱因斯坦、贝索、马赫“三人戏剧”
    • 3.33 2.33 时间平均的概念
    • 3.34 2.34 位力定理(上)
    • 3.35 2.35 位力定理(下)
    • 3.36 2.36 力学相似性
    • 3.37 2.37 四种虚拟力
    • 3.38 2.38 惯性张量
    • 3.39 2.39 微小振动
    • 3.40 2.40 系统的振动
  • 4 第三章 拉格朗日力学
    • 4.1 3.1 拉格朗日量、拉格朗日函数、拉格朗日方程(上)
    • 4.2 3.2 拉格朗日量、拉格朗日函数、拉格朗日方程(下)
    • 4.3 3.3 应用拉格朗日方程证明诺特定理(上)
    • 4.4 3.4 应用拉格朗日方程证明诺特定理(中)
    • 4.5 3.5 应用拉格朗日方程证明诺特定理(下)
    • 4.6 3.6 瑞利耗散函数、力-电类比(上)
    • 4.7 3.7 瑞利耗散函数、力-电类比(下)
    • 4.8 3.8 虚位移、虚功原理、广义力(上)
    • 4.9 3.9 虚位移、虚功原理、广义力(下)
    • 4.10 3.10 达朗贝尔原理、从达朗贝尔原理出发推导拉格朗日方程(上)
    • 4.11 3.11 达朗贝尔原理、从达朗贝尔原理出发推导拉格朗日方程(下)
    • 4.12 3.12 运动积分、运动常数
    • 4.13 3.13 达朗贝尔原理
    • 4.14 3.14 约尔丹原理
    • 4.15 3.15 高斯最小约束量原理
    • 4.16 3.16 拉格朗日量的性质(上)
    • 4.17 3.17 拉格朗日量的性质(下)
    • 4.18 3.18 从拉格朗日方程出发重新审视伽利略不变性
    • 4.19 3.19 伽利略变换与伽利略群
    • 4.20 3.20 弦的振动与音乐的和谐(上)
    • 4.21 3.21 弦的振动与音乐的和谐(中)
    • 4.22 3.22 弦的振动与音乐的和谐(下)
    • 4.23 3.23 膜的振动
    • 4.24 3.24 弛豫时间
    • 4.25 3.25 相对论力学(一)
    • 4.26 3.26 相对论力学(二)
    • 4.27 3.27 相对论力学(三)
    • 4.28 3.28 相对论力学(四)
  • 5 第四章 哈密顿力学
    • 5.1 4.1 微观可逆性原理、CPT 对称性原理(上)
    • 5.2 4.2 微观可逆性原理、CPT 对称性原理(下)
    • 5.3 4.3 对称性与Noether定理(上)
    • 5.4 4.4 对称性与Noether定理(下)
    • 5.5 4.5 勒让德变换(上)
    • 5.6 4.6 勒让德变换(下)
    • 5.7 4.7 哈密顿正则方程
    • 5.8 4.8 相空间
    • 5.9 4.9 罗斯方法——混合的哈密顿-拉格朗日方法(上)
    • 5.10 4.10 罗斯方法——混合的哈密顿-拉格朗日方法(下)
    • 5.11 4.11 泊松括号(一)
    • 5.12 4.12 泊松括号(二)
    • 5.13 4.13 泊松括号(三)
    • 5.14 4.14 泊松括号(四)
    • 5.15 4.15 哈密顿-雅克比方程(上)
    • 5.16 4.16 哈密顿-雅克比方程(下)
    • 5.17 4.17 用哈密顿-雅克比方程推导定态和含时薛定谔方程(上)
    • 5.18 4.18 用哈密顿-雅克比方程推导定态和含时薛定谔方程(下)
  • 6 第五章 连续介质力学与非线性力学初步
    • 6.1 5.1 胡克弹性、弹性力学初步(上)
    • 6.2 5.2 胡克弹性、弹性力学初步(中)
    • 6.3 5.3 胡克弹性、弹性力学初步(下)
    • 6.4 5.4 流变力学
    • 6.5 5.5 牛顿流体、流体力学初步
  • 7 第六章 生命力学
    • 7.1 6.1 生命体的简单标度关系
    • 7.2 6.2 异向生长标度律
    • 7.3 6.3 大脑中的力学(一)
    • 7.4 6.4 大脑中的力学(二)
    • 7.5 6.5 大脑中的力学(三)
    • 7.6 6.6 大脑中的力学(四)
    • 7.7 6.7 脑科学最新进展与同步现象简介
  • 8 第七章 微积分初步与量纲分析
    • 8.1 7.1 基于快速匹配法的量纲分析(一)
    • 8.2 7.2 基于快速匹配法的量纲分析(二)
    • 8.3 7.3 基于快速匹配法的量纲分析(三)
    • 8.4 7.4 基于快速匹配法的量纲分析(四)
    • 8.5 7.5 量纲分析、数量级估计与标度律的练习
    • 8.6 7.6 精细结构常数 α≈1/137
    • 8.7 7.7 齐次函数的欧拉定理
    • 8.8 7.8 变分法(上)
    • 8.9 7.9 变分法(下)
  • 9 阅读
    • 9.1 阅读
  • 10 调查问卷
    • 10.1 调查问卷
2.2 思想实验: 镞矢之疾、飞矢不动、芝诺佯谬
  • 1 视频
  • 2 章节测验


芝诺佯谬

芝诺悖论(Zeno's paradox)是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论。

这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。芝诺提出这些悖论是为了支持他老师巴门尼德关于“存在”不动、是一的学说。这些悖论中最著名的两个是:“阿基里斯跑不过乌龟”和“飞矢不动”。这些方法可以用微积分(无限)的概念解释,但还是无法用微积分解决,因为微积分原理存在的前提是存在广延(如,有广延的线段经过无限分割,还是由有广延的线段组成,而不是由无广延的点组成。),而芝诺悖论中既承认广延,又强调无广延的点。这些悖论之所以难以解决,是因为它集中强调后来笛卡尔和伽桑迪为代表的机械论的分歧点。 

芝诺

芝诺(Zeno of Elea)生于意大利半岛南部的埃利亚城邦,他是埃利亚学派的著名哲学家巴门尼德(Parmenides)的学生和朋友。据说他在母邦度过了一生,仅在成名之后到过雅典。据传说,芝诺因蓄谋反对埃利亚(另一说为叙拉古)的僭主,而被拘捕、拷打,直至处死。关于他的生平,缺乏可靠的文字记载。

柏拉图在他的对话《巴门尼德篇》中,记载了芝诺和巴门尼德于公元前5世纪中叶去雅典的一次访问。其中有这样的文字:“巴门尼德年事已高,约65岁;头发很白,但仪表堂堂。那时的芝诺约40岁,身材魁梧而美观,大家说他已经变成巴门尼德所钟爱的了。”在以后的希腊著作家看来,这次访问是柏拉图虚构的。但柏拉图有关芝诺观点的记叙,却被普遍认为是准确的。

在柏拉图的巴门尼德篇中,当芝诺谈到自己的著作(论自然)时,这样说道:“由于青年时的好胜著成此篇,著成后,人即将他窃去,以至我不能决断,是否应当让它问世。 ”芝诺不象他的老师那样企图从正面去证明是一不是多,是静不是动,他常常从反面即归谬法来为“存在论”辩护。公元五世纪的评论家普罗克洛斯(Proclus)说过,芝诺从“ 多”和运动的假设出发,一共推出了40个各不相同的悖论。现存的芝诺悖论至少有8个,其中关于运动的4个悖论最为著名。

芝诺的著作早已失传,亚里士多德的物理学和辛普里西奥斯为物理学作的注解是了解芝诺悖论的主要途径,此外只有少量零散的文献可作参考。直到19世纪中叶,亚里士多德关于芝诺悖论的引述及批评几乎是权威的,人们普遍认为芝诺悖论不过是一些诡辩。英国数学家B.罗素感慨的说:“在这个变化无常的世界上,没有什么比死后的声誉更变化无常了。死后得不到应有的评价的最典型例子莫过于埃利亚的芝诺了。他虽然发明了四个无限微妙无限深邃的悖论,后世的大批哲学家们却宣称他只不过是个聪明的骗子,而他的悖论只不过是一些诡辩。遭到两千多年的连续驳斥之后这些诡辩才得以正名,…。”

19世纪下半叶以来,学者们开始重新研究芝诺。他们推测芝诺的理论在古代就没能得到完整的、正确的报道,而是被诡辩家们用来倡导怀疑主义和否定知识,亚里士多德正是按照被诡辩家们歪曲过的形象来引述芝诺悖论的。学者们对芝诺提出这些悖论的目的还不清楚,但大家一致认为,芝诺关于运动的悖论不是简单的否认运动,这些悖论后面有着更深的内涵。亚里士多德的著作保存了芝诺悖论的大意,从这个意义上来说,他功不可没,但他对芝诺悖论的分析和批评是否成功,还不可以下定论。

有关芝诺悖论在古希腊数学发展中起到的作用,在科学史上众说纷纭。P·汤纳利首先提出,不是巴门尼德而是毕达哥拉斯学派发现的不可公约量,对芝诺悖论的提出产生了深刻的影响。H·赫斯和H·斯科尔斯则认为芝诺是对古代数学的发展起决定影响的人物,他们试图证明,毕达哥拉斯学派曾假定存在无限小的基本线段,想以此来克服因发现不可公约量而引起的矛盾,而芝诺的悖论反对了这种不准确的做法,从而迫使其他数学家去寻找真正的原因所在。另有一些学者持有完全不同的观点,他们认为芝诺对那个时代的数学发展没有作出任何重大的贡献。

不管争论的结果如何,人们无须担心芝诺的名字会从数学史上消失,就像美国数学史家E·T·贝尔说的,芝诺毕竟曾“以非数学的语言,记录下了最早同连续性和无限性格斗的人们所遭遇到的困难。”芝诺的功绩在于把动和静的关系、无限和有限的关系、连续和离散的关系惹人注意地摆了出来,并进行了辨证的考察。在哲学上,芝诺被亚里士多德誉为辩证法的发明人,黑格尔在他的哲学史演录中指出:“芝诺主要是客观的辨证的考察了运动,并称芝诺为‘辩证法的创始人’”。