-
1 视频
-
2 章节测验
线性空间

向量空间又称线性空间,是线性代数的中心内容和基本概念之一。在解析几何里引入向量概念后,使许多问题的处理变得更为简洁和清晰,在此基础上的进一步抽象化,形成了与域相联系的向量空间概念。譬如,实系数多项式的集合在定义适当的运算后构成向量空间,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。
向量空间它的理论和方法在科学技术的各个领域都有广泛的应用。
详细定义
向量空间亦称线性空间。它是线性代数的中心内容和基本概念之一。设V是一个非空集合,P是一个域。若:
1.在V中定义了一种运算,称为加法,即对V中任意两个元素α与β都按某一法则对应于V内惟一确定的一个元素α+β,称为α与β的和。
2.在P与V的元素间定义了一种运算,称为纯量乘法(亦称数量乘法),即对V中任意元素α和P中任意元素k,都按某一法则对应V内惟一确定的一个元素kα,称为k与α的积。
3.加法与纯量乘法满足以下条件:
1) α+β=β+α,对任意α,β∈V.
2) α+(β+γ)=(α+β)+γ,对任意α,β,γ∈V.
3) 存在一个元素0∈V,对一切α∈V有α+0=α,元素0称为V的零元.
4) 对任一α∈V,都存在β∈V使α+β=0,β称为α的负元素,记为-α.
5) 对P中单位元1,有1α=α(α∈V).
6) 对任意k,l∈P,α∈V有(kl)α=k(lα).
7) 对任意k,l∈P,α∈V有(k+l)α=kα+lα.
8) 对任意k∈P,α,β∈V有k(α+β)=kα+kβ,
则称V为域P上的一个线性空间,或向量空间。V中元素称为向量,V的零元称为零向量,P称为线性空间的基域.当P是实数域时,V称为实线性空间.当P是复数域时,V称为复线性空间。例如,若V为三维几何空间中全体向量(有向线段)构成的集合,P为实数域R,则V关于向量加法(即平行四边形法则)和数与向量的乘法构成实数域R上的线性空间。又如,若V为数域P上全体m×n矩阵组成的集合Mmn(P),V的加法与纯量乘法分别为矩阵的加法和数与矩阵的乘法,则Mmn(P)是数域P上的线性空间.V中向量就是m×n矩阵。再如,域P上所有n元向量(a1,a2,…,an)构成的集合P对于加法:(a1,a2,…,an)+(b1,b2,…,bn)=(a1+b1,a2+b2,…,an+bn)与纯量乘法:λ(a1,a2,…,an)=(λa1,λa2,…,λan)构成域P上的线性空间,称为域P上n元向量空间。
线性空间是在考察了大量的数学对象(如几何学与物理学中的向量,代数学中的n元向量、矩阵、多项式,分析学中的函数等)的本质属性后抽象出来的数学概念,近代数学中不少的研究对象,如赋范线性空间、模等都与线性空间有着密切的关系。它的理论与方法已经渗透到自然科学、工程技术的许多领域。哈密顿(Hamilton,W.R.)首先引进向量一词,并开创了向量理论和向量计算。格拉斯曼(Grassmann,H.G.)最早提出多维欧几里得空间的系统理论。1844—1847年,他与柯西(Cauchy,A.-L.)分别提出了脱离一切空间直观的、成为一个纯粹数学概念的、抽象的n维空间。特普利茨(Toeplitz,O.)将线性代数的主要定理推广到任意域上的一般的线性空间中。
公理化定义
设F是一个域。一个F上的向量空间是一个集合V的两个运算:
向量加法: V + V → V, 记作 v + w, ∃ v, w∈V
标量乘法: F × V → V, 记作 a·v, ∃a∈F, v∈V
符合下列公理 (∀ a, b ∈ F 及 u, v, w ∈ V):
1. 向量加法结合律:u + (v + w) = (u + v) + w;
2. 向量加法交换律:v + w = w + v;
3. 向量加法的单位元:V 里有一个叫做零向量的 0,∀ v ∈ V , v + 0 = v;
4. 向量加法的逆元素:∀v∈V, ∃w∈V,使得 v + w = 0;
5. 标量乘法分配于向量加法上:a(v + w) = a v + a w;
6. 标量乘法分配于域加法上: (a + b)v = a v + b v;
7. 标量乘法一致于标量的域乘法: a(b v) = (ab)v;
8. 标量乘法有单位元: 1 v = v, 这里 1 是指域 F 的乘法单位元。
有些教科书还强调以下两个公理:
V 闭合在向量加法下:v + w ∈ V
V 闭合在标量乘法下:a v ∈ V
更抽象的说,一个F上的向量空间是一个F-模。V的成员叫作向量,而F的成员叫作标量。若F是实数域R,V称为实向量空间;若F是复数域C,V称为复向量空间;若F是有限域,V称为有限域向量空间;对一般域F,V称为F-向量空间。
首4个公理是说明向量V在向量加法中是个阿贝尔群,余下的4个公理应用于标量乘法。
以下都是一些很容易从向量空间公理推展出来的特性:
零向量0 ∈ V(公理3)是唯一的
a 0 = 0,∀ a ∈ F
0 v = 0,∀ v ∈ V,这里 0 是F的加法单位元
a v = 0 ,则可以推出要么 a = 0 ,要么 v = 0
v的加法逆元(公理4)是唯一的(写成−v),这两个写法v − w 及 v + (−w) 都是标准的
(−1)v = −v,∀ v ∈ V
(−a)v = a(−v) = −(av),∀ a ∈ F ,∀ v ∈ V

