-
1 视频
-
2 章节测验
相空间
在数学与物理学中,相空间是一个用以表示出一系统所有可能状态的空间;系统每个可能的状态都有一相对应的相空间的点。
相空间是一个六维假想空间,其中动量和空间各占三维。每个相格投影到px-x平面上后面积总是h。尽管相格的形状如图所示可能十分任意,但我们可以把它们想象为方的或长方的。
简介
系统的相空间通常具有极大的维数,其中每一点代表了包括系统所有细节的整个物理态(系统每个粒子的位置和动量坐标)。
作为一个巨大维数的空间,它上面的每个点代表我们考虑的系统全部可能的态。
按方程方法
我们如何按照相空间来摹想哈密顿方程呢?首先,我们要记住相空间的单独的点Q实际代表什么。它代表所有位置坐标x1,x2,…和所有动量坐标p1,p2,…的一种特别的值。也就是说,Q表示我们整个物理系统,指明组成它的所有单独粒子的特定的运动状态。当我们知道它们现在的值时,哈密顿方程告诉我们所有这些坐标的变化率是多少,亦即它控制所有单独的粒子如何移动。
翻译成相空间语言,该方程告诉我们,如果给定单独的点Q在相空间的现在位置的话,它将会如何移动。为了描述我们整个系统随时间的变化,我们在相空间的每一点都有一个小箭头,更准确地讲,一个矢量,它告诉我们Q移动的方式。
这整体箭头的排列构成了所谓的矢量场。哈密顿方程就这样地在相空间中定义了一个矢量场。
决定论
我们看看如何按照相空间来解释物理的决定论。对于时间t=0的初始数据,我们有了一组指明所有位置和动量坐标的特定值;也就是说,我们在相空间特别选定了一点Q。为了找出此系统随时间的变化,我们就跟着箭头走好了,这样,不管一个系统如何复杂,该系统随时间的整个演化在相空间中仅仅被描述成一点沿着它所遭遇到的特定的箭头移动。
“长”的箭头表明Q移动得快,而“短”的箭头表明Q的运动停滞。只要看看Q以这种方式随着箭头在时间t移动到何处,即能知道我们物理系统在该时刻的状态。很清楚,这是一个决定性的过程。Q移动的方式由哈密顿矢量场所完全决定。
系统演化
哈密顿方程的形式允许我们以一种非常强而有力的一般方式去“摹想”经典系统的演化。想象一个多维“空间”,每一维对应于一个坐标x1,x2,…p1,p2,…(数学空间的维数,通常比3大得多。)此空间称之为相空间。对于n个无约束的粒子。相空间就有6n维(每个粒子有三个位置坐标和三个动量坐标)。读者或许会担心,甚至只要有一个单独粒子,其维数就是他或她通常所能摹想的二倍!不必为此沮丧!尽管六维的确是能比明了画出的更多的维数,但是即使我们真的把它画出也无太多用处。仅仅就一满屋子的气体,其相空间的维数大约就有10,000,000,000,000,000,000,000,000,000去准确地摹想这么大的空间是没有什么希望的!既然这样,秘诀是甚至对于一个粒子的相空间都不企图去这样做。只要想想某种含糊的三维(或者甚至就只有二维)的区域,再看看图就可以了。
可计算性
关于可计算性又如何呢?如果我们从相空间中的一个可计算的点(亦即从一个其位置和动量坐标都为可计算数的点)出发,并且等待可计算的时间t,那么一定会终结于从t和初始数据计算得出的某一点吗?答案肯定是依赖于哈密顿函数H的选择。实际上,在H中会出现一些物理常数,诸如牛顿的引力常数或光速——这些量的准确值视单位的选定而被决定,但其他的量可以是纯粹数字--并且,如果人们希望得到肯定答案的话,则必须保证这些常数是可计算的数。如果假定是这种情形,那我的猜想是,答案会是肯定的。这仅仅是一个猜测。然而,这是一个有趣的问题,我希望以后能进一步考察之。
另一方面,由于类似于我在讨论有关撞球世界时简要提出的理由,对我来说,这似乎不完全是相关的问题。为了使一个相空间的点是不可计算的断言有意义,它要求无限精确的坐标??亦即它的所有小数位!(一个由有限小数描述的数总是可以计算的。)一个数的小数展开的有限段不能告诉我们任何关于这个数整个展开的可计算性。但是,所有物理测量的精度都是有限的,只能给出有限位小数点的信息。在进行物理测量时,这是否使“可计算数”的整个概念化成泡影?”
的确,一个以任何有用的方式利用某些物理定律中(假想的)不可计算因素的仪器不应依赖于无限精确的测量。也许我在这里有些过分苛刻了。假定我们有一台物理仪器,为了已知的理论原因,模拟某种有趣的非算法的数学过程。如果此仪器的行为总可以被精密地确定的话,则它的行为就会给一系列数学上有趣的没有算法的是非问题以正确答案。任何给定的算法都会到某个阶段失效。而在那个阶段,该仪器会告诉我们某些新的东西。该仪器也许的确能把某些物理常数测量到越来越高的精度。而为了研究一系列越来越深入的问题,这是需要的。然而,在该仪器的有限的精度阶段,至少直到我们对这系列问题找到一个改善的算法之前,我们得到某些新的东西。然而,为了得到某些使用改善了的算法也不能告诉我们的东西,就必须乞求更高的精度。

