经典力学

赵亚溥

目录

  • 1 预备课 数学知识
    • 1.1 0.1 行列式、矢量的代数运算(一)
    • 1.2 0.2 行列式、矢量的代数运算(二)
    • 1.3 0.3 行列式、矢量的代数运算(三)
    • 1.4 0.4 行列式、矢量的代数运算(四)
    • 1.5 0.5 一元函数的微积分(上)
    • 1.6 0.6 一元函数的微积分(中)
    • 1.7 0.7 一元函数的微积分(下)
    • 1.8 0.8 多元函数的微积分(一)
    • 1.9 0.9 多元函数的微积分(二)
    • 1.10 0.10 多元函数的微积分(三)
    • 1.11 0.11 多元函数的微积分(四)
  • 2 第一章 经典力学概览
    • 2.1 1.1 经典力学——牛顿力学、拉格朗日力学、哈密顿力学
    • 2.2 1.2 经典力学的三个组成部分以及所联系的空间(上)
    • 2.3 1.3 经典力学的三个组成部分以及所联系的空间(下)
    • 2.4 1.4 直线运动 (Rectilinear Motion)
    • 2.5 1.5 平面曲线运动 (Curvilinear Motion)
    • 2.6 1.6 引力波介绍(上)
    • 2.7 1.7 引力波介绍(下)
    • 2.8 1.8 经典力学和几何光学之间的类比性
    • 2.9 1.9 一般曲线运动
    • 2.10 1.10 佯谬
    • 2.11 1.11 最小作用量原理(上)
    • 2.12 1.12 最小作用量原理(中)
    • 2.13 1.13 最小作用量原理(下)
    • 2.14 1.14 何谓经典力学?
    • 2.15 1.15 经典力学和几何光学之间的类比性,最小作用量原理
    • 2.16 1.16 黎曼度规张量与非欧几何简介(Lamé常数)
  • 3 第二章 牛顿力学与思想实验
    • 3.1 2.1 托里拆利小号佯谬
    • 3.2 2.2 思想实验: 镞矢之疾、飞矢不动、芝诺佯谬
    • 3.3 2.3 思想实验:伽利略相对性原理(一)
    • 3.4 2.4 思想实验:伽利略相对性原理(二)
    • 3.5 2.5 思想实验:伽利略相对性原理(三)
    • 3.6 2.6 思想实验:伽利略相对性原理(四)
    • 3.7 2.7 开普勒三大行星定律(上)
    • 3.8 2.8 开普勒三大行星定律(中)
    • 3.9 2.9 开普勒三大行星定律(下)
    • 3.10 2.10 Laplace-Runge-Lenz (LRL) 矢量
    • 3.11 2.11 牛顿的《自然哲学的数学原理》和三大运动定律(上)
    • 3.12 2.12 牛顿的《自然哲学的数学原理》和三大运动定律(中)
    • 3.13 2.13 牛顿的《自然哲学的数学原理》和三大运动定律(下)
    • 3.14 2.14 三体问题的由来和新进展
    • 3.15 2.15 平方反比定律(上)
    • 3.16 2.16 平方反比定律(下)
    • 3.17 2.17 牛顿壳层定理、地球内外的引力势(上)
    • 3.18 2.18 牛顿壳层定理、地球内外的引力势(下)
    • 3.19 2.19 转动中的力学(一)
    • 3.20 2.20 转动中的力学(二)
    • 3.21 2.21 转动中的力学(三)
    • 3.22 2.22 转动中的力学(四)
    • 3.23 2.23 爱因斯坦的电梯思想实验
    • 3.24 2.24 惯性质量、引力质量与等效原理(上)
    • 3.25 2.25 惯性质量、引力质量与等效原理(下)
    • 3.26 2.26 应用汤川势对平方反比定律的修正
    • 3.27 2.27 惯性张量表达式的推导(上)
    • 3.28 2.28 惯性张量表达式的推导(下)
    • 3.29 2.29 朗道《力学》选讲
    • 3.30 2.30 牛顿的水桶思想实验
    • 3.31 2.31 马赫原理
    • 3.32 2.32 爱因斯坦、贝索、马赫“三人戏剧”
    • 3.33 2.33 时间平均的概念
    • 3.34 2.34 位力定理(上)
    • 3.35 2.35 位力定理(下)
    • 3.36 2.36 力学相似性
    • 3.37 2.37 四种虚拟力
    • 3.38 2.38 惯性张量
    • 3.39 2.39 微小振动
    • 3.40 2.40 系统的振动
  • 4 第三章 拉格朗日力学
    • 4.1 3.1 拉格朗日量、拉格朗日函数、拉格朗日方程(上)
    • 4.2 3.2 拉格朗日量、拉格朗日函数、拉格朗日方程(下)
    • 4.3 3.3 应用拉格朗日方程证明诺特定理(上)
    • 4.4 3.4 应用拉格朗日方程证明诺特定理(中)
    • 4.5 3.5 应用拉格朗日方程证明诺特定理(下)
    • 4.6 3.6 瑞利耗散函数、力-电类比(上)
    • 4.7 3.7 瑞利耗散函数、力-电类比(下)
    • 4.8 3.8 虚位移、虚功原理、广义力(上)
    • 4.9 3.9 虚位移、虚功原理、广义力(下)
    • 4.10 3.10 达朗贝尔原理、从达朗贝尔原理出发推导拉格朗日方程(上)
    • 4.11 3.11 达朗贝尔原理、从达朗贝尔原理出发推导拉格朗日方程(下)
    • 4.12 3.12 运动积分、运动常数
    • 4.13 3.13 达朗贝尔原理
    • 4.14 3.14 约尔丹原理
    • 4.15 3.15 高斯最小约束量原理
    • 4.16 3.16 拉格朗日量的性质(上)
    • 4.17 3.17 拉格朗日量的性质(下)
    • 4.18 3.18 从拉格朗日方程出发重新审视伽利略不变性
    • 4.19 3.19 伽利略变换与伽利略群
    • 4.20 3.20 弦的振动与音乐的和谐(上)
    • 4.21 3.21 弦的振动与音乐的和谐(中)
    • 4.22 3.22 弦的振动与音乐的和谐(下)
    • 4.23 3.23 膜的振动
    • 4.24 3.24 弛豫时间
    • 4.25 3.25 相对论力学(一)
    • 4.26 3.26 相对论力学(二)
    • 4.27 3.27 相对论力学(三)
    • 4.28 3.28 相对论力学(四)
  • 5 第四章 哈密顿力学
    • 5.1 4.1 微观可逆性原理、CPT 对称性原理(上)
    • 5.2 4.2 微观可逆性原理、CPT 对称性原理(下)
    • 5.3 4.3 对称性与Noether定理(上)
    • 5.4 4.4 对称性与Noether定理(下)
    • 5.5 4.5 勒让德变换(上)
    • 5.6 4.6 勒让德变换(下)
    • 5.7 4.7 哈密顿正则方程
    • 5.8 4.8 相空间
    • 5.9 4.9 罗斯方法——混合的哈密顿-拉格朗日方法(上)
    • 5.10 4.10 罗斯方法——混合的哈密顿-拉格朗日方法(下)
    • 5.11 4.11 泊松括号(一)
    • 5.12 4.12 泊松括号(二)
    • 5.13 4.13 泊松括号(三)
    • 5.14 4.14 泊松括号(四)
    • 5.15 4.15 哈密顿-雅克比方程(上)
    • 5.16 4.16 哈密顿-雅克比方程(下)
    • 5.17 4.17 用哈密顿-雅克比方程推导定态和含时薛定谔方程(上)
    • 5.18 4.18 用哈密顿-雅克比方程推导定态和含时薛定谔方程(下)
  • 6 第五章 连续介质力学与非线性力学初步
    • 6.1 5.1 胡克弹性、弹性力学初步(上)
    • 6.2 5.2 胡克弹性、弹性力学初步(中)
    • 6.3 5.3 胡克弹性、弹性力学初步(下)
    • 6.4 5.4 流变力学
    • 6.5 5.5 牛顿流体、流体力学初步
  • 7 第六章 生命力学
    • 7.1 6.1 生命体的简单标度关系
    • 7.2 6.2 异向生长标度律
    • 7.3 6.3 大脑中的力学(一)
    • 7.4 6.4 大脑中的力学(二)
    • 7.5 6.5 大脑中的力学(三)
    • 7.6 6.6 大脑中的力学(四)
    • 7.7 6.7 脑科学最新进展与同步现象简介
  • 8 第七章 微积分初步与量纲分析
    • 8.1 7.1 基于快速匹配法的量纲分析(一)
    • 8.2 7.2 基于快速匹配法的量纲分析(二)
    • 8.3 7.3 基于快速匹配法的量纲分析(三)
    • 8.4 7.4 基于快速匹配法的量纲分析(四)
    • 8.5 7.5 量纲分析、数量级估计与标度律的练习
    • 8.6 7.6 精细结构常数 α≈1/137
    • 8.7 7.7 齐次函数的欧拉定理
    • 8.8 7.8 变分法(上)
    • 8.9 7.9 变分法(下)
  • 9 阅读
    • 9.1 阅读
  • 10 调查问卷
    • 10.1 调查问卷
7.6 精细结构常数 α≈1/137
  • 1 视频
  • 2 ​章节测验


精细结构常数

精细结构常数,是物理学中一个重要的无量纲数,常用希腊字母α表示。精细结构常数表示电子在第一玻尔轨道上的运动速度和真空中光速的比值,计算公式为 α=e2/(4πε0cħ)(其中e是电子的电荷,ε是真空介电常数, ħ是约化普朗克常数,c 是真空中的光速)。

精细结构常数是一个数字,量纲为1(或说是无单位)1/α≈137(更近似为137.03599976)

历程进展

早在1664年,牛顿就发现一束细小的太阳光在通过三棱镜后会分解成像彩虹那用的连续光带。牛顿把这种彩色的光带叫做光谱。到19世纪初,英国物理学家威廉·渥拉斯顿(William Wollaston)发现,太阳光的连续光谱带其实并不是真正连续的,而是带有许许许多多的暗线条。以后德国物理学家约瑟夫·冯·福隆霍弗(Josheph von Fraunhoffer)进一步精确记录了数百条这种暗线的位置。1859年德国物理学家古斯塔夫·罗伯特·克基霍夫(Gustav R. Kirchhoff)又发现,把某些物质放在火焰中灼烧时,火焰会呈现特定的颜色。如果把这种色光也用三棱镜进行分解,就会发现它的光谱仅由几条特定的亮线条组成,而这些亮线条的位置与太阳光谱中暗线条的位置完全重合。克基霍夫据此断定,这些光谱线的位置是组成物质的原子的基本性质。基于这一原理,他在1861与德国化学家罗伯特·本生(Robert Bunsen)合作,第一次对太阳大气的化学组成进行了系统化的研究。这些光谱中暗线和亮线,被称为原子吸收光谱和发射光谱。利用光谱知识来确定物质的化学组成的方法,也发展成了一门重要的学科——光谱分析学。

到19世纪下半叶,物理学家们精确地研究了各种元素的光谱,并积累了大量的光谱数据。1891年,麦克尔逊(Michelson)通过更精确的实验发现,原子光谱的每一条谱线,实际上是由两条或多条靠得很近的谱线组成的。这种细微的结构称为光谱线的精细结构。然而,当时的物理学理论无法解释光谱为什么是一条条分离的谱线,而不是连续的谱带,更不用说光谱的精细结构了。

第一个对氢原子光谱作出成功解释的,是尼尔斯·玻尔(Niels Bohr)于1913年发表的氢原子模型。在这个模型中,玻尔大胆地假设,电子只在一些具有特定能量的轨道上绕核作圆周运动,这些特定的能量称为电子的能级。当电子从一个能级跳到另一个能级时,会吸收或发射与能级差相对应的光量子。玻尔从这两个假设出发,成功地解释了氢原子光谱线的分布规律。

在玻尔之后,阿诺德·索末斐(Arnold Sommerfeld)对他的氢原子模型作了几方面的改进。首先,索末斐认为原子核的质量并非无穷大,所以电子并不是绕固定不动的原子核转动,而应该是原子核和电子绕着他们的共同质心转动。其次,电子绕核运行的轨道与行星绕日运行的轨道相似,不必是一个正圆,也可以是椭圆。最后,因为核外电子的运动速度很快,有必要计及质量随速度变化的相对论效应。在经过这样改进之后,索末斐发现电子的轨道能级除了跟原来玻尔模型中的轨道主量子数n有关外,还跟另一个角量子数k有关。对于某个主量子数n,可以取n个不同的角量子数。这些具有相同主量子数但不同角量子数的轨道之间的能级有一个微小的差别。索末斐认为,正是这个微小的差别造成了原子光谱的精细结构。这一点,被随后对氦离子光谱的精确测定所证实。另外,考虑了电子与原子核的相对运动之后,轨道能级的数值也变成了与原子核的质量有关,这也解释了氢原子光谱与氘原子光谱之间的细微差别。

在索末斐模型中,不同角量子数的轨道之间的能级差正比于某个无量纲常数的平方。这个常数来源于电子的质量随速度变化的相对论效应。事实上,它就是基态轨道上电子的线速度与光速之比。根据玻尔模型,很容易推算出基态轨道上电子的速度为 v=e2/ (2ε0h)。它与光速之比,正是我们前面看到的精细结构常数的公式。因为它首先由索末斐在解释原子光谱的精细结构时出现,所以这个常数被称为(索末斐)精细结构常数。