-
1 视频
-
2 章节测验
量纲
量纲(dimension)是指物理量的基本属性。物理学的研究可定量地描述各种物理现象,描述中所采用的各类物理量之间有着密切的关系,即它们之间具有确定的函数关系。为了准确地描述这些关系,物理量可分为基本量和导出量。基本量是具有独立量纲的物理量,导出量是指其量纲可以表示为基本量量纲组合的物理量;一切导出量均可从基本量中导出,由此建立了整个物理量之间函数关系。这种函数关系通常称为量制。以给定量制中基本量量纲的幂的乘积表示某量量纲的表达式,称为量纲式或量纲积。它定性地表达了导出量与基本量的关系,对于基本量而言,其量纲为其自身。在物理学发展的历史上,先后曾建立过各种不同的量制:CGS量制、静电量制、高斯量制等。1971年后,国际上普遍采用了国际单位制(简称SI),选定了由7个基本量构成的量制,导出量均可用这7个基本量导出。7个基本量的量纲分别用长度L、质量M、时间T、电流I、温度Θ、物质的量n和光强度J表示,则任一个导出量的量纲
dimA=LαMβTγIδΘεNζJη,
这是量纲的通式。式中的指数α,β,γ…称为量纲指数,全部指数均为零的物理量,称为无量纲量,如精细结构常数即为一无量纲量。此外,如速度的量纲dimV=LT-1,加速度a的量纲dima=LT-2等。
由来
物理学中,不同的物理量有着不同的单位,然而这些单位之间都有相互的联系。实际上,恰当地规定一些基本的单位(称为基本单位),可以使任何其他的单位(称为导出单位)都表达为这些单位的乘积,将其统一以便于研究各个物理量之间的关系。如在国际单位制中,功的单位焦耳(
),可以表示为“千克平方米每平方秒”(
)。
然而,仅仅用单位来表示会面临一些问题:
(1)在不同的单位制下,各个物理量用单位来表示也会不同,以至于起不到预期的“统一各单位”的效果。如英里每小时(mph)与米每秒(m/s)乍看之下无甚联系,然而它们却都是表示速度的单位。虽然说经过转换可以将各个基本单位也统一,然而这样终究不够直观,需记忆也不甚方便,而且选择哪一个单位作为统一单位似乎都不甚公平。
(2)把一个既有的单位表达为拆分了的基本单位的形式实际上没有任何意义,功的单位无论如何都不是“千克二次方米每二次方秒”,因为实际上这个单位根本不存在,它只是与“焦耳”恰好相等而已。况且,这样做也会导致一些拆分后相同但实质不同的单位被混淆,如力矩的单位牛米(
)被拆分后也是
,然而它与功显然是完全不同的。因此量纲被作为表达导出单位组成的专有方式引入物理学中。
量纲分析
量纲分析(dimensional analysis)是对物理现象或问题所涉及的物理量的属性进行分析,从而建立因果关系的方法。
量纲分析是自然科学中一种重要的研究方法,它根据一切量所必须具有的形式来分析判断事物间数量关系所遵循的一般规律。通过量纲分析可以检查反映物理现象规律的方程在计量方面是否正确,甚至可提供寻找物理现象某些规律的线索。
客观规律要求数值的非实质变化必须保证事物客观大小的绝对性。具体说,任何两个一定大小的同类量,不论测量的单位如何,它们的相对大小永远不变,即它们的比值对任何单位都必须是个定值。同类量相对大小对于单位的不变性是度量的根本原则。违反这一原则,量度将没有任何意义。根据这个原则,可以导出以下的重要结论:在确定的单位制中,所有物理量的量纲都具有基本量量纲的幂次积形式(证明从略)。
实际现象总是同时参有许多物理量。它们间通过理论与实验建立起一定的依存关系,构成某一客观规律的数学算式。显然,这种数量关系必须有具体内容,列成算式时要首先考虑运算的含义。物理中只有同类量或它们的同样组合才能进行加减。另外,在建立算式时要采用统一单位制的观点,否则将无法按名数的大小来进行比较。当然,单位总可以通过换算给予统一,因而不构成任何限制。其次,所建立反映客观实际规律的关系式,必须在单位尺度的主观任意变换下不受破坏。关系式的这一性质称为“完整性”。
表现数量关系的最一般形式是多项式。保证多项式的完整性有两种办法:一是要求出现在算式中的一切参量都是无量纲纯数,二是要求式中所有各项具有完全相同的量纲,也就是每一项的每一基本量纲都有相同的幂次,即所谓量纲的齐次性。算式中各项都是有关名数的幂次积,它们可分为量数和量纲两部分。既然量纲齐次,等式两边的量纲因子就可以相消,只剩下纯粹由量数构成的关系方程,也就是无量纲化了。总之,量纲齐次是构成完整性的充分和必要条件。
应该指出,任何两个量纲齐次的算式,假如硬性相加成为新的多项式,它虽然仍具有完整性,但可能变为非量纲齐次。这是因为两个算式分别表示不同类量间的关系。任何算式应用于具体实例都是如此,所以无需看作是量纲齐次的破坏。
所谓量纲独立指其中任何一个量的量纲式不能由其余量的量纲式的幂次积所组成。例如MLT体系中长度[L]、速度[LT-1]和能量[ML2T-2]三者是独立的,而长度[L]、速度[LT-1]和加速度[LT-2]三者间则非独立的。三个基本量的体系一般也只具有不多于三个的量纲独立量。
历史上最早把物理量的属性看作物理量量纲的是J.傅里叶。他把dimension一词的概念,从几何学中的长度、面积和体积的范畴,推广到物理学中的长度、时间、质量、力、能、热等物理量的范畴,这一词不再限于长、宽、高等几何空间的属性,而泛指物理现象中物理量的属性,称之为量纲。他说换了单位不仅某量的大小变了,与该量有关的量的大小也跟着变。
在同一个时期,O.雷诺和瑞利应用量纲的概念屡屡取得成功。雷诺首先用于检验方程各项的齐次性。瑞利则用于克服求解问题中遇到的数学困难。后来,E.白金汉提出:每一个物理定律都可以用几个零量纲幂次的量(称之为Π)来表述。P.布里奇曼将白金汉的提法称之为Π定理。实际上,傅里叶早已指明这种提法的实质,只可惜在他那个年代并没有引起大家的重视。
量纲分析又叫因次分析,是20世纪初提出的在物理领域中建立数学模型的一种方法。量纲分析就是在量纲法则的原则下,分析和探求物理量之间关系。
量纲分析的基础是量纲法则。而在深层次运用中,会运用到Π定理,以至于有时把量纲分析直接看作“运用Π定理进行无量纲化的过程”。

