经典力学

赵亚溥

目录

  • 1 预备课 数学知识
    • 1.1 0.1 行列式、矢量的代数运算(一)
    • 1.2 0.2 行列式、矢量的代数运算(二)
    • 1.3 0.3 行列式、矢量的代数运算(三)
    • 1.4 0.4 行列式、矢量的代数运算(四)
    • 1.5 0.5 一元函数的微积分(上)
    • 1.6 0.6 一元函数的微积分(中)
    • 1.7 0.7 一元函数的微积分(下)
    • 1.8 0.8 多元函数的微积分(一)
    • 1.9 0.9 多元函数的微积分(二)
    • 1.10 0.10 多元函数的微积分(三)
    • 1.11 0.11 多元函数的微积分(四)
  • 2 第一章 经典力学概览
    • 2.1 1.1 经典力学——牛顿力学、拉格朗日力学、哈密顿力学
    • 2.2 1.2 经典力学的三个组成部分以及所联系的空间(上)
    • 2.3 1.3 经典力学的三个组成部分以及所联系的空间(下)
    • 2.4 1.4 直线运动 (Rectilinear Motion)
    • 2.5 1.5 平面曲线运动 (Curvilinear Motion)
    • 2.6 1.6 引力波介绍(上)
    • 2.7 1.7 引力波介绍(下)
    • 2.8 1.8 经典力学和几何光学之间的类比性
    • 2.9 1.9 一般曲线运动
    • 2.10 1.10 佯谬
    • 2.11 1.11 最小作用量原理(上)
    • 2.12 1.12 最小作用量原理(中)
    • 2.13 1.13 最小作用量原理(下)
    • 2.14 1.14 何谓经典力学?
    • 2.15 1.15 经典力学和几何光学之间的类比性,最小作用量原理
    • 2.16 1.16 黎曼度规张量与非欧几何简介(Lamé常数)
  • 3 第二章 牛顿力学与思想实验
    • 3.1 2.1 托里拆利小号佯谬
    • 3.2 2.2 思想实验: 镞矢之疾、飞矢不动、芝诺佯谬
    • 3.3 2.3 思想实验:伽利略相对性原理(一)
    • 3.4 2.4 思想实验:伽利略相对性原理(二)
    • 3.5 2.5 思想实验:伽利略相对性原理(三)
    • 3.6 2.6 思想实验:伽利略相对性原理(四)
    • 3.7 2.7 开普勒三大行星定律(上)
    • 3.8 2.8 开普勒三大行星定律(中)
    • 3.9 2.9 开普勒三大行星定律(下)
    • 3.10 2.10 Laplace-Runge-Lenz (LRL) 矢量
    • 3.11 2.11 牛顿的《自然哲学的数学原理》和三大运动定律(上)
    • 3.12 2.12 牛顿的《自然哲学的数学原理》和三大运动定律(中)
    • 3.13 2.13 牛顿的《自然哲学的数学原理》和三大运动定律(下)
    • 3.14 2.14 三体问题的由来和新进展
    • 3.15 2.15 平方反比定律(上)
    • 3.16 2.16 平方反比定律(下)
    • 3.17 2.17 牛顿壳层定理、地球内外的引力势(上)
    • 3.18 2.18 牛顿壳层定理、地球内外的引力势(下)
    • 3.19 2.19 转动中的力学(一)
    • 3.20 2.20 转动中的力学(二)
    • 3.21 2.21 转动中的力学(三)
    • 3.22 2.22 转动中的力学(四)
    • 3.23 2.23 爱因斯坦的电梯思想实验
    • 3.24 2.24 惯性质量、引力质量与等效原理(上)
    • 3.25 2.25 惯性质量、引力质量与等效原理(下)
    • 3.26 2.26 应用汤川势对平方反比定律的修正
    • 3.27 2.27 惯性张量表达式的推导(上)
    • 3.28 2.28 惯性张量表达式的推导(下)
    • 3.29 2.29 朗道《力学》选讲
    • 3.30 2.30 牛顿的水桶思想实验
    • 3.31 2.31 马赫原理
    • 3.32 2.32 爱因斯坦、贝索、马赫“三人戏剧”
    • 3.33 2.33 时间平均的概念
    • 3.34 2.34 位力定理(上)
    • 3.35 2.35 位力定理(下)
    • 3.36 2.36 力学相似性
    • 3.37 2.37 四种虚拟力
    • 3.38 2.38 惯性张量
    • 3.39 2.39 微小振动
    • 3.40 2.40 系统的振动
  • 4 第三章 拉格朗日力学
    • 4.1 3.1 拉格朗日量、拉格朗日函数、拉格朗日方程(上)
    • 4.2 3.2 拉格朗日量、拉格朗日函数、拉格朗日方程(下)
    • 4.3 3.3 应用拉格朗日方程证明诺特定理(上)
    • 4.4 3.4 应用拉格朗日方程证明诺特定理(中)
    • 4.5 3.5 应用拉格朗日方程证明诺特定理(下)
    • 4.6 3.6 瑞利耗散函数、力-电类比(上)
    • 4.7 3.7 瑞利耗散函数、力-电类比(下)
    • 4.8 3.8 虚位移、虚功原理、广义力(上)
    • 4.9 3.9 虚位移、虚功原理、广义力(下)
    • 4.10 3.10 达朗贝尔原理、从达朗贝尔原理出发推导拉格朗日方程(上)
    • 4.11 3.11 达朗贝尔原理、从达朗贝尔原理出发推导拉格朗日方程(下)
    • 4.12 3.12 运动积分、运动常数
    • 4.13 3.13 达朗贝尔原理
    • 4.14 3.14 约尔丹原理
    • 4.15 3.15 高斯最小约束量原理
    • 4.16 3.16 拉格朗日量的性质(上)
    • 4.17 3.17 拉格朗日量的性质(下)
    • 4.18 3.18 从拉格朗日方程出发重新审视伽利略不变性
    • 4.19 3.19 伽利略变换与伽利略群
    • 4.20 3.20 弦的振动与音乐的和谐(上)
    • 4.21 3.21 弦的振动与音乐的和谐(中)
    • 4.22 3.22 弦的振动与音乐的和谐(下)
    • 4.23 3.23 膜的振动
    • 4.24 3.24 弛豫时间
    • 4.25 3.25 相对论力学(一)
    • 4.26 3.26 相对论力学(二)
    • 4.27 3.27 相对论力学(三)
    • 4.28 3.28 相对论力学(四)
  • 5 第四章 哈密顿力学
    • 5.1 4.1 微观可逆性原理、CPT 对称性原理(上)
    • 5.2 4.2 微观可逆性原理、CPT 对称性原理(下)
    • 5.3 4.3 对称性与Noether定理(上)
    • 5.4 4.4 对称性与Noether定理(下)
    • 5.5 4.5 勒让德变换(上)
    • 5.6 4.6 勒让德变换(下)
    • 5.7 4.7 哈密顿正则方程
    • 5.8 4.8 相空间
    • 5.9 4.9 罗斯方法——混合的哈密顿-拉格朗日方法(上)
    • 5.10 4.10 罗斯方法——混合的哈密顿-拉格朗日方法(下)
    • 5.11 4.11 泊松括号(一)
    • 5.12 4.12 泊松括号(二)
    • 5.13 4.13 泊松括号(三)
    • 5.14 4.14 泊松括号(四)
    • 5.15 4.15 哈密顿-雅克比方程(上)
    • 5.16 4.16 哈密顿-雅克比方程(下)
    • 5.17 4.17 用哈密顿-雅克比方程推导定态和含时薛定谔方程(上)
    • 5.18 4.18 用哈密顿-雅克比方程推导定态和含时薛定谔方程(下)
  • 6 第五章 连续介质力学与非线性力学初步
    • 6.1 5.1 胡克弹性、弹性力学初步(上)
    • 6.2 5.2 胡克弹性、弹性力学初步(中)
    • 6.3 5.3 胡克弹性、弹性力学初步(下)
    • 6.4 5.4 流变力学
    • 6.5 5.5 牛顿流体、流体力学初步
  • 7 第六章 生命力学
    • 7.1 6.1 生命体的简单标度关系
    • 7.2 6.2 异向生长标度律
    • 7.3 6.3 大脑中的力学(一)
    • 7.4 6.4 大脑中的力学(二)
    • 7.5 6.5 大脑中的力学(三)
    • 7.6 6.6 大脑中的力学(四)
    • 7.7 6.7 脑科学最新进展与同步现象简介
  • 8 第七章 微积分初步与量纲分析
    • 8.1 7.1 基于快速匹配法的量纲分析(一)
    • 8.2 7.2 基于快速匹配法的量纲分析(二)
    • 8.3 7.3 基于快速匹配法的量纲分析(三)
    • 8.4 7.4 基于快速匹配法的量纲分析(四)
    • 8.5 7.5 量纲分析、数量级估计与标度律的练习
    • 8.6 7.6 精细结构常数 α≈1/137
    • 8.7 7.7 齐次函数的欧拉定理
    • 8.8 7.8 变分法(上)
    • 8.9 7.9 变分法(下)
  • 9 阅读
    • 9.1 阅读
  • 10 调查问卷
    • 10.1 调查问卷
3.6 瑞利耗散函数、力-电类比(上)
  • 1 视频
  • 2 章节测验


瑞利

瑞利原名约翰·威廉·斯特拉特(John William Strutt),尊称瑞利男爵三世(Third Baron Rayleigh),1842年11月12日出生于英国埃塞克斯郡莫尔登(Malden)的朗弗德林园。他的父亲是第二世男爵约翰·詹姆斯·斯特拉特,母亲叫克拉腊·伊丽莎白·拉图哲,是理查德·维卡斯海军上校的小女儿。瑞利以严谨、广博、精深著称,并善于用简单的设备作实验而能获得十分精确的数据。他是在19世纪末年达到经典物理学颠峰的少数学者之一,在众多学科中都有成果,其中尤以光学中的瑞利散射和瑞利判据、物性学中的气体密度测量几方面影响最为深远。

主要成就

自从门捷列夫周期表提出以后,科学家对寻找新的元素以填补周期表上的空缺,表现出了很大的积极性。但是,人们没有想到,竟然在周期表上遗漏了整整一族性质特殊的惰性气体。1882年,瑞利为了证实普劳特假说,曾经测过氢和氧的密度。经过十年长期的测定,他宣布氢和氧的原子量之比实际上不是1:16,而是1:15.882。他还测定了氮的密度,他发现从液态空气中分馏出来的氮,跟从亚硝酸铵中分离出来的氮,密度有微小的但却是不可忽略的偏差。从液态空气中分馏出来的氮,密度为1.2572 g/cm3,而用化学方法从亚硝酸铵直接得到的氮,密度却为 1.2505 g/cm3。两者数值相差千分之几,在小数点后第三位不相同。他认为,这一差异远远超出了实验误差范围,一定有尚未查清的因素在起作用。为此他先后提出过几种假说来解释造成这种不一致的原因。其中有一种是认为在大气中的氮还含有一种同素异形体,就像氧和臭氧那样,这种同素异形体混杂在大气氮之中,而从化学方法所得应该就是纯净的氮。两者密度之差说明这种未知的成分具有更大的密度。于是,瑞利仿照臭氧的化学符号O3,称之为N3。可是论文发表后没有引起人们的普遍注意,只有化学家拉姆赛(W.Ramsay)表示有兴趣和他合作进一步研究这一问题。拉姆赛重复了瑞利的实验,宣布证实了瑞利的结果,肯定有N3的存在。两位科学家在经过严密的研究后,于1894年确定所谓的N3并不是氮的同素异形体,而是一种特殊的,从未观察到的不活泼的单原子气体,其原子量为39.95,在大气中约含0.93%。他们取名为氩,其希腊文的原意是“不活泼”的意思。第一个惰性气体就这样被发现了。这种普遍存在的大气成分,存在于人类身边,多少科学家在分析空气时,都错过了发现的机会。瑞利之所以抓住了这个机会,应该说是他严谨的科学态度、认真的周密研究的结果,假如他把千分之几的偏差简单地归于实验误差,就会轻易地失之交臂。瑞利和拉姆赛发现氩的过程,历经了10年之久的平凡琐碎的化学实验工作,他们不惜付出巨大劳动,亲自动手,一丝不苟,才终于取得有历史意义的重大成果。在发现氩之后,拉姆赛在瑞利的协助下又发现了氦,氪和氖。据说,拉姆赛在研究其它惰性气体时,曾将百余升的液态空气慢慢蒸发,逐步检查,才得以对空气的组成作出明确的判定。科学界对瑞利和拉姆赛的功绩作了充分的肯定,因此瑞利和拉姆赛在1904年分别被授予诺贝尔物理学奖和化学奖。

瑞利

瑞利勋爵的最初研究工作主要是光学和振动系统的数学研究,后来的研究几乎涉及物理学的各个方面,如声学、波的理论、彩色视觉、电动力学、电磁学、光的散射、液体的流动、流体动力学、气体的密度、粘滞性、毛细作用、弹性和照相术。他的坚持不懈和精密的实验导致建立了电阻标准、电流标准和电动势标准,后来的工作集中在电学和磁学问题。

瑞利在力学上有多方面的成就。他在弹性振动理论方面得到许多重要结果,其中包括对系统固有频率的性质进行估值和计算。他利用在埃及休养时写成了两卷著名的《声学理论》(Theory of Sound, 1877~1878年),系统总结了他研究弹性振动的成果。1887年,他首先指出弹性波中存在表面被,这对认识地震的机理有重要作用。他还分析过流体由于上下温度差度引起的对流,引进了有关的无量纲数(后称为瑞利数),这个结果可以用来解释由于地面大气对流而引起的某些气象现象。此外,他研究过有限幅度波的传播和气体对运动物体的阻力等。 

为了解释“天空为什么呈现蓝色”这个长期令人不解的问题,他导出了分子散射公式,这个公式被称为瑞利散射定律。在实验方面,他进行了光栅分辨率和衍射的研究,第一个对光学仪器的分辨率给出明确的定义;这项工作导致后来关于光谱仪的光学性质等一系列基础性的研究,对光谱学的发展起了重要作用。绝对黑体辐射和频率的关系是19世纪后半叶受到物理学界普遍关注的问 题。瑞利在1900年从统计物理学的角度提出一个关于热辐射的公式,即后来所谓的瑞利-金斯公式,内容是说在长波区域,辐射的能量密度应正比于绝对温度。这一结果与实验符合得很好,为量子论的出现准备了条件。瑞利密切注意量子论和相对论的出现和发展。他对声光相互作用、机械运动模式、非线性振动等项目的研究,对整个物理学的发展都具有深远影响。瑞利在晚年依然积极致力于研究工作。1905年以后发表的论文就有90篇,并且一直在修订出版《声学原理》,这部著作至今不仅为研究机械振动的声学工作者当做经典巨著,而且也是对其他物理学者很有助益的参考文献。瑞利把诺贝尔奖金捐赠给卡文迪什实验室和剑桥大学图书馆。晚年还以很大兴趣研究教育问题。人们把瑞利作为经典物理学领域中最后一个伟大的多面手,是很适当的。