经典力学

赵亚溥

目录

  • 1 预备课 数学知识
    • 1.1 0.1 行列式、矢量的代数运算(一)
    • 1.2 0.2 行列式、矢量的代数运算(二)
    • 1.3 0.3 行列式、矢量的代数运算(三)
    • 1.4 0.4 行列式、矢量的代数运算(四)
    • 1.5 0.5 一元函数的微积分(上)
    • 1.6 0.6 一元函数的微积分(中)
    • 1.7 0.7 一元函数的微积分(下)
    • 1.8 0.8 多元函数的微积分(一)
    • 1.9 0.9 多元函数的微积分(二)
    • 1.10 0.10 多元函数的微积分(三)
    • 1.11 0.11 多元函数的微积分(四)
  • 2 第一章 经典力学概览
    • 2.1 1.1 经典力学——牛顿力学、拉格朗日力学、哈密顿力学
    • 2.2 1.2 经典力学的三个组成部分以及所联系的空间(上)
    • 2.3 1.3 经典力学的三个组成部分以及所联系的空间(下)
    • 2.4 1.4 直线运动 (Rectilinear Motion)
    • 2.5 1.5 平面曲线运动 (Curvilinear Motion)
    • 2.6 1.6 引力波介绍(上)
    • 2.7 1.7 引力波介绍(下)
    • 2.8 1.8 经典力学和几何光学之间的类比性
    • 2.9 1.9 一般曲线运动
    • 2.10 1.10 佯谬
    • 2.11 1.11 最小作用量原理(上)
    • 2.12 1.12 最小作用量原理(中)
    • 2.13 1.13 最小作用量原理(下)
    • 2.14 1.14 何谓经典力学?
    • 2.15 1.15 经典力学和几何光学之间的类比性,最小作用量原理
    • 2.16 1.16 黎曼度规张量与非欧几何简介(Lamé常数)
  • 3 第二章 牛顿力学与思想实验
    • 3.1 2.1 托里拆利小号佯谬
    • 3.2 2.2 思想实验: 镞矢之疾、飞矢不动、芝诺佯谬
    • 3.3 2.3 思想实验:伽利略相对性原理(一)
    • 3.4 2.4 思想实验:伽利略相对性原理(二)
    • 3.5 2.5 思想实验:伽利略相对性原理(三)
    • 3.6 2.6 思想实验:伽利略相对性原理(四)
    • 3.7 2.7 开普勒三大行星定律(上)
    • 3.8 2.8 开普勒三大行星定律(中)
    • 3.9 2.9 开普勒三大行星定律(下)
    • 3.10 2.10 Laplace-Runge-Lenz (LRL) 矢量
    • 3.11 2.11 牛顿的《自然哲学的数学原理》和三大运动定律(上)
    • 3.12 2.12 牛顿的《自然哲学的数学原理》和三大运动定律(中)
    • 3.13 2.13 牛顿的《自然哲学的数学原理》和三大运动定律(下)
    • 3.14 2.14 三体问题的由来和新进展
    • 3.15 2.15 平方反比定律(上)
    • 3.16 2.16 平方反比定律(下)
    • 3.17 2.17 牛顿壳层定理、地球内外的引力势(上)
    • 3.18 2.18 牛顿壳层定理、地球内外的引力势(下)
    • 3.19 2.19 转动中的力学(一)
    • 3.20 2.20 转动中的力学(二)
    • 3.21 2.21 转动中的力学(三)
    • 3.22 2.22 转动中的力学(四)
    • 3.23 2.23 爱因斯坦的电梯思想实验
    • 3.24 2.24 惯性质量、引力质量与等效原理(上)
    • 3.25 2.25 惯性质量、引力质量与等效原理(下)
    • 3.26 2.26 应用汤川势对平方反比定律的修正
    • 3.27 2.27 惯性张量表达式的推导(上)
    • 3.28 2.28 惯性张量表达式的推导(下)
    • 3.29 2.29 朗道《力学》选讲
    • 3.30 2.30 牛顿的水桶思想实验
    • 3.31 2.31 马赫原理
    • 3.32 2.32 爱因斯坦、贝索、马赫“三人戏剧”
    • 3.33 2.33 时间平均的概念
    • 3.34 2.34 位力定理(上)
    • 3.35 2.35 位力定理(下)
    • 3.36 2.36 力学相似性
    • 3.37 2.37 四种虚拟力
    • 3.38 2.38 惯性张量
    • 3.39 2.39 微小振动
    • 3.40 2.40 系统的振动
  • 4 第三章 拉格朗日力学
    • 4.1 3.1 拉格朗日量、拉格朗日函数、拉格朗日方程(上)
    • 4.2 3.2 拉格朗日量、拉格朗日函数、拉格朗日方程(下)
    • 4.3 3.3 应用拉格朗日方程证明诺特定理(上)
    • 4.4 3.4 应用拉格朗日方程证明诺特定理(中)
    • 4.5 3.5 应用拉格朗日方程证明诺特定理(下)
    • 4.6 3.6 瑞利耗散函数、力-电类比(上)
    • 4.7 3.7 瑞利耗散函数、力-电类比(下)
    • 4.8 3.8 虚位移、虚功原理、广义力(上)
    • 4.9 3.9 虚位移、虚功原理、广义力(下)
    • 4.10 3.10 达朗贝尔原理、从达朗贝尔原理出发推导拉格朗日方程(上)
    • 4.11 3.11 达朗贝尔原理、从达朗贝尔原理出发推导拉格朗日方程(下)
    • 4.12 3.12 运动积分、运动常数
    • 4.13 3.13 达朗贝尔原理
    • 4.14 3.14 约尔丹原理
    • 4.15 3.15 高斯最小约束量原理
    • 4.16 3.16 拉格朗日量的性质(上)
    • 4.17 3.17 拉格朗日量的性质(下)
    • 4.18 3.18 从拉格朗日方程出发重新审视伽利略不变性
    • 4.19 3.19 伽利略变换与伽利略群
    • 4.20 3.20 弦的振动与音乐的和谐(上)
    • 4.21 3.21 弦的振动与音乐的和谐(中)
    • 4.22 3.22 弦的振动与音乐的和谐(下)
    • 4.23 3.23 膜的振动
    • 4.24 3.24 弛豫时间
    • 4.25 3.25 相对论力学(一)
    • 4.26 3.26 相对论力学(二)
    • 4.27 3.27 相对论力学(三)
    • 4.28 3.28 相对论力学(四)
  • 5 第四章 哈密顿力学
    • 5.1 4.1 微观可逆性原理、CPT 对称性原理(上)
    • 5.2 4.2 微观可逆性原理、CPT 对称性原理(下)
    • 5.3 4.3 对称性与Noether定理(上)
    • 5.4 4.4 对称性与Noether定理(下)
    • 5.5 4.5 勒让德变换(上)
    • 5.6 4.6 勒让德变换(下)
    • 5.7 4.7 哈密顿正则方程
    • 5.8 4.8 相空间
    • 5.9 4.9 罗斯方法——混合的哈密顿-拉格朗日方法(上)
    • 5.10 4.10 罗斯方法——混合的哈密顿-拉格朗日方法(下)
    • 5.11 4.11 泊松括号(一)
    • 5.12 4.12 泊松括号(二)
    • 5.13 4.13 泊松括号(三)
    • 5.14 4.14 泊松括号(四)
    • 5.15 4.15 哈密顿-雅克比方程(上)
    • 5.16 4.16 哈密顿-雅克比方程(下)
    • 5.17 4.17 用哈密顿-雅克比方程推导定态和含时薛定谔方程(上)
    • 5.18 4.18 用哈密顿-雅克比方程推导定态和含时薛定谔方程(下)
  • 6 第五章 连续介质力学与非线性力学初步
    • 6.1 5.1 胡克弹性、弹性力学初步(上)
    • 6.2 5.2 胡克弹性、弹性力学初步(中)
    • 6.3 5.3 胡克弹性、弹性力学初步(下)
    • 6.4 5.4 流变力学
    • 6.5 5.5 牛顿流体、流体力学初步
  • 7 第六章 生命力学
    • 7.1 6.1 生命体的简单标度关系
    • 7.2 6.2 异向生长标度律
    • 7.3 6.3 大脑中的力学(一)
    • 7.4 6.4 大脑中的力学(二)
    • 7.5 6.5 大脑中的力学(三)
    • 7.6 6.6 大脑中的力学(四)
    • 7.7 6.7 脑科学最新进展与同步现象简介
  • 8 第七章 微积分初步与量纲分析
    • 8.1 7.1 基于快速匹配法的量纲分析(一)
    • 8.2 7.2 基于快速匹配法的量纲分析(二)
    • 8.3 7.3 基于快速匹配法的量纲分析(三)
    • 8.4 7.4 基于快速匹配法的量纲分析(四)
    • 8.5 7.5 量纲分析、数量级估计与标度律的练习
    • 8.6 7.6 精细结构常数 α≈1/137
    • 8.7 7.7 齐次函数的欧拉定理
    • 8.8 7.8 变分法(上)
    • 8.9 7.9 变分法(下)
  • 9 阅读
    • 9.1 阅读
  • 10 调查问卷
    • 10.1 调查问卷
2.30 牛顿的水桶思想实验
  • 1 视频
  • 2 章节测验


水桶实验

水桶实验是英格兰物理学家、数学家、天文学家、自然哲学家艾萨克·牛顿爵士所做过的一个实验,用以证明绝对空间的存在。牛顿对于该实验的解释,在一百年后遭到奥地利物理学家、哲学家、心理学家、生物学家马赫的批判和犹太裔理论物理学家、思想家及哲学家爱因斯坦的颠覆。

实验原理

牛顿是这样叙述的:“如果用长绳吊一水桶,让它旋转至绳扭紧,然后将水注入,水与桶都暂处于静止之中。再以另一力突然使桶沿反方向旋转,当绳子完全放松时,桶的运动还会维持一段时间;水的表面起初是平的,和桶开始旋转时一样。但是后来,当桶逐渐把运动传递给水,使水也开始旋转。于是可以看到水渐渐地脱离其中心而沿桶壁上升形成凹状。运动越快,水升得越高。直到最后,水与桶的转速一致,水面即呈相对静止。”

(a)桶吊在一根长绳上,将桶旋转多次而使绳拧紧,然后盛水并使桶与水静止,此时水是平面的。

(b)接着松开,因长绳的扭力使桶旋转,起初,桶在旋转而桶内的水并没有跟着一起旋转,水还是平面的。

(c)转过一段时间,因桶的摩檫力带动水一起旋转,水就形成了凹面。直到水与桶的转速一致。这时,水和桶之间是相对静止的,相对于桶,水是不转动的。但水面却仍然呈凹状,中心低,桶边高。