-
1 视频
-
2 章节测验
达朗贝尔原理

达朗贝尔原理(D'Alembert's principle)是求解约束系统动力学问题的一个普遍原理,由法国数学家和物理学家J.达朗贝尔于1743年提出。
达朗贝尔在《动力学》一书中,提出了达朗贝尔原理,与牛顿第二定律相似,但其发展在于可以把动力学问题转化为静力学问题处理,还可以用平面静力的方法分析刚体的平面运动,这一原理使一些力学问题的分析简单化,而且为分析力学的创立打下了基础。达朗贝尔还对当时运动量度的争论提出了自己的看法,他认为两种量度是等价的,并提出了物体动量的变化与力的作用时间有关。达朗贝尔第一次用微分方程表示场,同时提出了著名的达朗贝尔原理——流体力学的一个原理,虽然存在一些问题,但是达朗贝尔第一次提出了流体速度和加速度分量的概念。达朗贝尔的力学知识为天文学领域做出了重要贡献。同时达朗贝尔发现了流体自转时平衡形式的一般结果,关于地球形状和自转的理论。
达朗贝尔原理因其发现者法国物理学家与数学家J·达朗贝尔而命名。达朗贝尔原理阐明,对于任意物理系统,所有惯性力或施加的外力,经过符合约束条件的虚位移,所作的虚功的总和等于零。
或者说,作用于一个物体的外力与动力的反作用之和等于零。
受约束的非自由质点受有主动力F 及约束力FN,如果再加上虚构的惯性力FI =-ma,则下式成立:
F+FN+FI=0 (1)
即在质点运动的任一时刻,主动力、约束力与惯性力构成平衡力系。上式为质点的达朗贝尔

原理。对质点系,如果在每个质点上都加上虚构的惯性力FIi=-miai,则质系中每个质点均处于平衡,即:
Fi+FNi+FIi=0(i=1,2,…,n) (2)
达朗贝尔最初提出的原理与式(1)不同。把主动力F分为两部分:F(1)使质点产生加速度,F(1)=ma,称为有效力;F(2)=F-F(1)克服约束力。
对改变质点的运动状态不起作用,称为损失力。损失力与约束力平衡:
F(2)+FN=0
这就是达朗贝尔原理,它与质点静止时的平衡方程F+FN=0形式上一致。如果将前面F(1)、F(2)的表达式代入达朗贝尔原理,就得到:
F+FN+(-ma)=0
与式(1)相同,它们均与牛顿第二运动定律等价。

