经典力学

赵亚溥

目录

  • 1 预备课 数学知识
    • 1.1 0.1 行列式、矢量的代数运算(一)
    • 1.2 0.2 行列式、矢量的代数运算(二)
    • 1.3 0.3 行列式、矢量的代数运算(三)
    • 1.4 0.4 行列式、矢量的代数运算(四)
    • 1.5 0.5 一元函数的微积分(上)
    • 1.6 0.6 一元函数的微积分(中)
    • 1.7 0.7 一元函数的微积分(下)
    • 1.8 0.8 多元函数的微积分(一)
    • 1.9 0.9 多元函数的微积分(二)
    • 1.10 0.10 多元函数的微积分(三)
    • 1.11 0.11 多元函数的微积分(四)
  • 2 第一章 经典力学概览
    • 2.1 1.1 经典力学——牛顿力学、拉格朗日力学、哈密顿力学
    • 2.2 1.2 经典力学的三个组成部分以及所联系的空间(上)
    • 2.3 1.3 经典力学的三个组成部分以及所联系的空间(下)
    • 2.4 1.4 直线运动 (Rectilinear Motion)
    • 2.5 1.5 平面曲线运动 (Curvilinear Motion)
    • 2.6 1.6 引力波介绍(上)
    • 2.7 1.7 引力波介绍(下)
    • 2.8 1.8 经典力学和几何光学之间的类比性
    • 2.9 1.9 一般曲线运动
    • 2.10 1.10 佯谬
    • 2.11 1.11 最小作用量原理(上)
    • 2.12 1.12 最小作用量原理(中)
    • 2.13 1.13 最小作用量原理(下)
    • 2.14 1.14 何谓经典力学?
    • 2.15 1.15 经典力学和几何光学之间的类比性,最小作用量原理
    • 2.16 1.16 黎曼度规张量与非欧几何简介(Lamé常数)
  • 3 第二章 牛顿力学与思想实验
    • 3.1 2.1 托里拆利小号佯谬
    • 3.2 2.2 思想实验: 镞矢之疾、飞矢不动、芝诺佯谬
    • 3.3 2.3 思想实验:伽利略相对性原理(一)
    • 3.4 2.4 思想实验:伽利略相对性原理(二)
    • 3.5 2.5 思想实验:伽利略相对性原理(三)
    • 3.6 2.6 思想实验:伽利略相对性原理(四)
    • 3.7 2.7 开普勒三大行星定律(上)
    • 3.8 2.8 开普勒三大行星定律(中)
    • 3.9 2.9 开普勒三大行星定律(下)
    • 3.10 2.10 Laplace-Runge-Lenz (LRL) 矢量
    • 3.11 2.11 牛顿的《自然哲学的数学原理》和三大运动定律(上)
    • 3.12 2.12 牛顿的《自然哲学的数学原理》和三大运动定律(中)
    • 3.13 2.13 牛顿的《自然哲学的数学原理》和三大运动定律(下)
    • 3.14 2.14 三体问题的由来和新进展
    • 3.15 2.15 平方反比定律(上)
    • 3.16 2.16 平方反比定律(下)
    • 3.17 2.17 牛顿壳层定理、地球内外的引力势(上)
    • 3.18 2.18 牛顿壳层定理、地球内外的引力势(下)
    • 3.19 2.19 转动中的力学(一)
    • 3.20 2.20 转动中的力学(二)
    • 3.21 2.21 转动中的力学(三)
    • 3.22 2.22 转动中的力学(四)
    • 3.23 2.23 爱因斯坦的电梯思想实验
    • 3.24 2.24 惯性质量、引力质量与等效原理(上)
    • 3.25 2.25 惯性质量、引力质量与等效原理(下)
    • 3.26 2.26 应用汤川势对平方反比定律的修正
    • 3.27 2.27 惯性张量表达式的推导(上)
    • 3.28 2.28 惯性张量表达式的推导(下)
    • 3.29 2.29 朗道《力学》选讲
    • 3.30 2.30 牛顿的水桶思想实验
    • 3.31 2.31 马赫原理
    • 3.32 2.32 爱因斯坦、贝索、马赫“三人戏剧”
    • 3.33 2.33 时间平均的概念
    • 3.34 2.34 位力定理(上)
    • 3.35 2.35 位力定理(下)
    • 3.36 2.36 力学相似性
    • 3.37 2.37 四种虚拟力
    • 3.38 2.38 惯性张量
    • 3.39 2.39 微小振动
    • 3.40 2.40 系统的振动
  • 4 第三章 拉格朗日力学
    • 4.1 3.1 拉格朗日量、拉格朗日函数、拉格朗日方程(上)
    • 4.2 3.2 拉格朗日量、拉格朗日函数、拉格朗日方程(下)
    • 4.3 3.3 应用拉格朗日方程证明诺特定理(上)
    • 4.4 3.4 应用拉格朗日方程证明诺特定理(中)
    • 4.5 3.5 应用拉格朗日方程证明诺特定理(下)
    • 4.6 3.6 瑞利耗散函数、力-电类比(上)
    • 4.7 3.7 瑞利耗散函数、力-电类比(下)
    • 4.8 3.8 虚位移、虚功原理、广义力(上)
    • 4.9 3.9 虚位移、虚功原理、广义力(下)
    • 4.10 3.10 达朗贝尔原理、从达朗贝尔原理出发推导拉格朗日方程(上)
    • 4.11 3.11 达朗贝尔原理、从达朗贝尔原理出发推导拉格朗日方程(下)
    • 4.12 3.12 运动积分、运动常数
    • 4.13 3.13 达朗贝尔原理
    • 4.14 3.14 约尔丹原理
    • 4.15 3.15 高斯最小约束量原理
    • 4.16 3.16 拉格朗日量的性质(上)
    • 4.17 3.17 拉格朗日量的性质(下)
    • 4.18 3.18 从拉格朗日方程出发重新审视伽利略不变性
    • 4.19 3.19 伽利略变换与伽利略群
    • 4.20 3.20 弦的振动与音乐的和谐(上)
    • 4.21 3.21 弦的振动与音乐的和谐(中)
    • 4.22 3.22 弦的振动与音乐的和谐(下)
    • 4.23 3.23 膜的振动
    • 4.24 3.24 弛豫时间
    • 4.25 3.25 相对论力学(一)
    • 4.26 3.26 相对论力学(二)
    • 4.27 3.27 相对论力学(三)
    • 4.28 3.28 相对论力学(四)
  • 5 第四章 哈密顿力学
    • 5.1 4.1 微观可逆性原理、CPT 对称性原理(上)
    • 5.2 4.2 微观可逆性原理、CPT 对称性原理(下)
    • 5.3 4.3 对称性与Noether定理(上)
    • 5.4 4.4 对称性与Noether定理(下)
    • 5.5 4.5 勒让德变换(上)
    • 5.6 4.6 勒让德变换(下)
    • 5.7 4.7 哈密顿正则方程
    • 5.8 4.8 相空间
    • 5.9 4.9 罗斯方法——混合的哈密顿-拉格朗日方法(上)
    • 5.10 4.10 罗斯方法——混合的哈密顿-拉格朗日方法(下)
    • 5.11 4.11 泊松括号(一)
    • 5.12 4.12 泊松括号(二)
    • 5.13 4.13 泊松括号(三)
    • 5.14 4.14 泊松括号(四)
    • 5.15 4.15 哈密顿-雅克比方程(上)
    • 5.16 4.16 哈密顿-雅克比方程(下)
    • 5.17 4.17 用哈密顿-雅克比方程推导定态和含时薛定谔方程(上)
    • 5.18 4.18 用哈密顿-雅克比方程推导定态和含时薛定谔方程(下)
  • 6 第五章 连续介质力学与非线性力学初步
    • 6.1 5.1 胡克弹性、弹性力学初步(上)
    • 6.2 5.2 胡克弹性、弹性力学初步(中)
    • 6.3 5.3 胡克弹性、弹性力学初步(下)
    • 6.4 5.4 流变力学
    • 6.5 5.5 牛顿流体、流体力学初步
  • 7 第六章 生命力学
    • 7.1 6.1 生命体的简单标度关系
    • 7.2 6.2 异向生长标度律
    • 7.3 6.3 大脑中的力学(一)
    • 7.4 6.4 大脑中的力学(二)
    • 7.5 6.5 大脑中的力学(三)
    • 7.6 6.6 大脑中的力学(四)
    • 7.7 6.7 脑科学最新进展与同步现象简介
  • 8 第七章 微积分初步与量纲分析
    • 8.1 7.1 基于快速匹配法的量纲分析(一)
    • 8.2 7.2 基于快速匹配法的量纲分析(二)
    • 8.3 7.3 基于快速匹配法的量纲分析(三)
    • 8.4 7.4 基于快速匹配法的量纲分析(四)
    • 8.5 7.5 量纲分析、数量级估计与标度律的练习
    • 8.6 7.6 精细结构常数 α≈1/137
    • 8.7 7.7 齐次函数的欧拉定理
    • 8.8 7.8 变分法(上)
    • 8.9 7.9 变分法(下)
  • 9 阅读
    • 9.1 阅读
  • 10 调查问卷
    • 10.1 调查问卷
2.11 牛顿的《自然哲学的数学原理》和三大运动定律(上)
  • 1 视频
  • 2 章节测验


《自然哲学的数学原理》

《自然哲学的数学原理》是英国物理学家艾萨克·牛顿创作的物理学哲学著作,1687年首次出版。

《自然哲学的数学原理》是牛顿重要的物理学哲学著作。全书分为三卷,第一卷“论物体的运动”,表述了牛顿三定律;第二卷也是“论物体的运动”,论述了阻力下物体的运动,为流体力学开先河;第三卷“论宇宙的系统”,讨论了宇宙系统。

《自然哲学的数学原理》总结了近代天体力学和地面力学的成就,为经典力学规定了一套基本概念,提出了力学的三大定律和万有引力定律,从而使经典力学成为一个完整的理论体系。该书意味着经典力学的成熟,其中所建立的经典力学的理论体系成为近代科学的标准尺度。

牛顿三大定律

在《自然哲学的数学原理》中有关“定义”的部分,牛顿提出了一个假设实验:在高山之巅放射炮弹,炮力不足,炮弹飞了一阵便以弧形曲线下落地面。假如炮力足够大,炮弹将绕地球面周行,这是向心力的表演。在“公理或运动的定律”部分,牛顿了提出并论述了“运动的定律”,也就是牛顿三大定律。其中第一定律,也叫惯性定律:“每个物体继续保持其静止或沿一直线作等速运动的状态,除非有力加于其上,迫使它改变这种状态。”第二定律为:“运动的改变和所加的动力成正比,并且发生在所加的力的那个直线方向上。”第三定律,也叫作用和反作用定律:“每一个作用总是有一个相等的反作用和它对抗;或者说,两物体彼此之间的相互作用永远相等,并且各自指向其对方。”牛顿的运动定律,是他对物理学的一项贡献。  

论物体的运动

《自然哲学的数学原理》第一卷“论物体的运动”。在这一卷里,牛顿阐述了物体运动的基础理论,并严密地证明了,在各种不同条件的引力作用下物体运动的规律。也就是在这部分,牛顿第一次正式公布了他发明的微积分。牛顿用了若干个辅助定理说明极限的意义,导出微积分方法(即流数术和反流数术)。牛顿在《自然哲学的数学原理》的序言里,就开宗明义地宣称:“由于古人认为在研究自然事物时力学最为重要,而今人则舍弃其实体形状和隐蔽性质而力图以数学定律说明自然现象,因此我在这本书中,也致力于用数学来探讨有关的哲学问题。”在第一卷的证明中,牛顿就用了微积分这种新的分析方法。在《自然哲学的数学原理》的全书中,都体现了牛顿的这个初衷。他将新的数学工具运用于分析引力、潮汐、彗星、声和光、流体阻力,乃至整个宇宙。其中一个最辉煌的战果就是万有引力定律。牛顿经过严密的数学论证,得出结论:“万物彼此都吸引着;这个引力的大小与各个物体的质量成正比例,而与它们之间的距离的平方成反比例。”这就是“万有引力定律”。牛顿运用万有引力定律,不仅解释了已有的理论已经说明的现象,如伽利略发现的惯性定律和自由落体定律,而且能说明并解释已有的理论不能解释的现象,如圆满地解释了开普勒的行星运动三定律。更难得的是,它还预见了新的尚未发现的天文现象,包括后来证实的天王星的存在。牛顿还引入了绝对时间、绝对空间和绝对运动的观念。

《自然哲学的数学原理》第二卷“论物体的运动”,为第一卷基本定律的具体运用,阐述了物体在空或水中受到阻力时的运动情况,并涉及声学的研究。牛顿有力地批驳了当时广为流行的笛卡尔旋涡理论。牛顿明确指出,在旋祸中转动的行星不可能符合开普勒定律。  

论宇宙的系统

《自然哲学的数学原理》第三卷的标题为“论宇宙的系统”。在这一卷中,牛顿提出了四条“哲学中的推理规则”,强调“寻求自然事物的原因,不得超出真实和足以解释其现象者”,以及“对于相同的自然现象,必须尽可能地寻求相同的原因”等,提出了万物的普遍属性。这反映出牛顿深信宇宙万物是按简单、和谐和统一的原则构成的。牛顿的这四条推理规则,直到今天都是科学研究中所遵循的基本准则。

接着,牛顿讨论了太阳系的行星、月球和彗星的运行,以及地球上海洋潮汐的成因。他还特别对木星和土星的卫星运动做了研究,指出它们严格遵循平方反比定律。牛顿运用月球引力作用,成功地解释了海洋潮汐现象。这是当时对月球运动最为详尽的解释。他对地球的形状做了精确的计算。牛顿根据几个实验数据分析指出,地球在南北极比赤道处要扁平些,这是由于地球自转造成的。这同笛卡尔学说的观点恰好相反。在《自然哲学的数学原理》第三卷中,还有关于彗星的理论。牛顿对已有的大量彗星资料和观测记录做了分析,论证了平方反比关系也适合于彗星和太阳之间。他得出结论道,彗星与普通行星并没有本质区别,这不过比它的轨道偏心率大得多而已,这种扁椭圆轨道很接近抛物线。