经典力学

赵亚溥

目录

  • 1 预备课 数学知识
    • 1.1 0.1 行列式、矢量的代数运算(一)
    • 1.2 0.2 行列式、矢量的代数运算(二)
    • 1.3 0.3 行列式、矢量的代数运算(三)
    • 1.4 0.4 行列式、矢量的代数运算(四)
    • 1.5 0.5 一元函数的微积分(上)
    • 1.6 0.6 一元函数的微积分(中)
    • 1.7 0.7 一元函数的微积分(下)
    • 1.8 0.8 多元函数的微积分(一)
    • 1.9 0.9 多元函数的微积分(二)
    • 1.10 0.10 多元函数的微积分(三)
    • 1.11 0.11 多元函数的微积分(四)
  • 2 第一章 经典力学概览
    • 2.1 1.1 经典力学——牛顿力学、拉格朗日力学、哈密顿力学
    • 2.2 1.2 经典力学的三个组成部分以及所联系的空间(上)
    • 2.3 1.3 经典力学的三个组成部分以及所联系的空间(下)
    • 2.4 1.4 直线运动 (Rectilinear Motion)
    • 2.5 1.5 平面曲线运动 (Curvilinear Motion)
    • 2.6 1.6 引力波介绍(上)
    • 2.7 1.7 引力波介绍(下)
    • 2.8 1.8 经典力学和几何光学之间的类比性
    • 2.9 1.9 一般曲线运动
    • 2.10 1.10 佯谬
    • 2.11 1.11 最小作用量原理(上)
    • 2.12 1.12 最小作用量原理(中)
    • 2.13 1.13 最小作用量原理(下)
    • 2.14 1.14 何谓经典力学?
    • 2.15 1.15 经典力学和几何光学之间的类比性,最小作用量原理
    • 2.16 1.16 黎曼度规张量与非欧几何简介(Lamé常数)
  • 3 第二章 牛顿力学与思想实验
    • 3.1 2.1 托里拆利小号佯谬
    • 3.2 2.2 思想实验: 镞矢之疾、飞矢不动、芝诺佯谬
    • 3.3 2.3 思想实验:伽利略相对性原理(一)
    • 3.4 2.4 思想实验:伽利略相对性原理(二)
    • 3.5 2.5 思想实验:伽利略相对性原理(三)
    • 3.6 2.6 思想实验:伽利略相对性原理(四)
    • 3.7 2.7 开普勒三大行星定律(上)
    • 3.8 2.8 开普勒三大行星定律(中)
    • 3.9 2.9 开普勒三大行星定律(下)
    • 3.10 2.10 Laplace-Runge-Lenz (LRL) 矢量
    • 3.11 2.11 牛顿的《自然哲学的数学原理》和三大运动定律(上)
    • 3.12 2.12 牛顿的《自然哲学的数学原理》和三大运动定律(中)
    • 3.13 2.13 牛顿的《自然哲学的数学原理》和三大运动定律(下)
    • 3.14 2.14 三体问题的由来和新进展
    • 3.15 2.15 平方反比定律(上)
    • 3.16 2.16 平方反比定律(下)
    • 3.17 2.17 牛顿壳层定理、地球内外的引力势(上)
    • 3.18 2.18 牛顿壳层定理、地球内外的引力势(下)
    • 3.19 2.19 转动中的力学(一)
    • 3.20 2.20 转动中的力学(二)
    • 3.21 2.21 转动中的力学(三)
    • 3.22 2.22 转动中的力学(四)
    • 3.23 2.23 爱因斯坦的电梯思想实验
    • 3.24 2.24 惯性质量、引力质量与等效原理(上)
    • 3.25 2.25 惯性质量、引力质量与等效原理(下)
    • 3.26 2.26 应用汤川势对平方反比定律的修正
    • 3.27 2.27 惯性张量表达式的推导(上)
    • 3.28 2.28 惯性张量表达式的推导(下)
    • 3.29 2.29 朗道《力学》选讲
    • 3.30 2.30 牛顿的水桶思想实验
    • 3.31 2.31 马赫原理
    • 3.32 2.32 爱因斯坦、贝索、马赫“三人戏剧”
    • 3.33 2.33 时间平均的概念
    • 3.34 2.34 位力定理(上)
    • 3.35 2.35 位力定理(下)
    • 3.36 2.36 力学相似性
    • 3.37 2.37 四种虚拟力
    • 3.38 2.38 惯性张量
    • 3.39 2.39 微小振动
    • 3.40 2.40 系统的振动
  • 4 第三章 拉格朗日力学
    • 4.1 3.1 拉格朗日量、拉格朗日函数、拉格朗日方程(上)
    • 4.2 3.2 拉格朗日量、拉格朗日函数、拉格朗日方程(下)
    • 4.3 3.3 应用拉格朗日方程证明诺特定理(上)
    • 4.4 3.4 应用拉格朗日方程证明诺特定理(中)
    • 4.5 3.5 应用拉格朗日方程证明诺特定理(下)
    • 4.6 3.6 瑞利耗散函数、力-电类比(上)
    • 4.7 3.7 瑞利耗散函数、力-电类比(下)
    • 4.8 3.8 虚位移、虚功原理、广义力(上)
    • 4.9 3.9 虚位移、虚功原理、广义力(下)
    • 4.10 3.10 达朗贝尔原理、从达朗贝尔原理出发推导拉格朗日方程(上)
    • 4.11 3.11 达朗贝尔原理、从达朗贝尔原理出发推导拉格朗日方程(下)
    • 4.12 3.12 运动积分、运动常数
    • 4.13 3.13 达朗贝尔原理
    • 4.14 3.14 约尔丹原理
    • 4.15 3.15 高斯最小约束量原理
    • 4.16 3.16 拉格朗日量的性质(上)
    • 4.17 3.17 拉格朗日量的性质(下)
    • 4.18 3.18 从拉格朗日方程出发重新审视伽利略不变性
    • 4.19 3.19 伽利略变换与伽利略群
    • 4.20 3.20 弦的振动与音乐的和谐(上)
    • 4.21 3.21 弦的振动与音乐的和谐(中)
    • 4.22 3.22 弦的振动与音乐的和谐(下)
    • 4.23 3.23 膜的振动
    • 4.24 3.24 弛豫时间
    • 4.25 3.25 相对论力学(一)
    • 4.26 3.26 相对论力学(二)
    • 4.27 3.27 相对论力学(三)
    • 4.28 3.28 相对论力学(四)
  • 5 第四章 哈密顿力学
    • 5.1 4.1 微观可逆性原理、CPT 对称性原理(上)
    • 5.2 4.2 微观可逆性原理、CPT 对称性原理(下)
    • 5.3 4.3 对称性与Noether定理(上)
    • 5.4 4.4 对称性与Noether定理(下)
    • 5.5 4.5 勒让德变换(上)
    • 5.6 4.6 勒让德变换(下)
    • 5.7 4.7 哈密顿正则方程
    • 5.8 4.8 相空间
    • 5.9 4.9 罗斯方法——混合的哈密顿-拉格朗日方法(上)
    • 5.10 4.10 罗斯方法——混合的哈密顿-拉格朗日方法(下)
    • 5.11 4.11 泊松括号(一)
    • 5.12 4.12 泊松括号(二)
    • 5.13 4.13 泊松括号(三)
    • 5.14 4.14 泊松括号(四)
    • 5.15 4.15 哈密顿-雅克比方程(上)
    • 5.16 4.16 哈密顿-雅克比方程(下)
    • 5.17 4.17 用哈密顿-雅克比方程推导定态和含时薛定谔方程(上)
    • 5.18 4.18 用哈密顿-雅克比方程推导定态和含时薛定谔方程(下)
  • 6 第五章 连续介质力学与非线性力学初步
    • 6.1 5.1 胡克弹性、弹性力学初步(上)
    • 6.2 5.2 胡克弹性、弹性力学初步(中)
    • 6.3 5.3 胡克弹性、弹性力学初步(下)
    • 6.4 5.4 流变力学
    • 6.5 5.5 牛顿流体、流体力学初步
  • 7 第六章 生命力学
    • 7.1 6.1 生命体的简单标度关系
    • 7.2 6.2 异向生长标度律
    • 7.3 6.3 大脑中的力学(一)
    • 7.4 6.4 大脑中的力学(二)
    • 7.5 6.5 大脑中的力学(三)
    • 7.6 6.6 大脑中的力学(四)
    • 7.7 6.7 脑科学最新进展与同步现象简介
  • 8 第七章 微积分初步与量纲分析
    • 8.1 7.1 基于快速匹配法的量纲分析(一)
    • 8.2 7.2 基于快速匹配法的量纲分析(二)
    • 8.3 7.3 基于快速匹配法的量纲分析(三)
    • 8.4 7.4 基于快速匹配法的量纲分析(四)
    • 8.5 7.5 量纲分析、数量级估计与标度律的练习
    • 8.6 7.6 精细结构常数 α≈1/137
    • 8.7 7.7 齐次函数的欧拉定理
    • 8.8 7.8 变分法(上)
    • 8.9 7.9 变分法(下)
  • 9 阅读
    • 9.1 阅读
  • 10 调查问卷
    • 10.1 调查问卷
2.13 牛顿的《自然哲学的数学原理》和三大运动定律(下)
  • 1 视频
  • 2 章节测验


发展简史

公元前5世纪,古希腊哲学家德谟克利特(Leucippus,公元前500—公元前440)、伊壁鸠鲁(Epicurus,公元前341—公元前270)认为:“当原子在虚空里被带向前进而没有东西与他们碰撞时,它们一定以相等的速度运动。”这只是猜测或推想的结果。

公元前4世纪,古希腊哲学家亚里士多德(Aristotle,公元前384—公元前322)指出:静止是物体的自然状态,如果没有作用力就没有运动(力是维持物体运动的原因)。该观点遗失了“力能使物体停止运动,也能使物体开始运动”这一关键点,故错误。但他第一次提出了力与运动间存在关系,为力学发展做出了一定贡献。

6世纪,希腊学者菲洛彭诺斯(J.Philoponus)对亚里士多德的运动学说持批判态度。他认为抛体本身具有某种动力,推动物体前进,直到耗尽才趋于停止,这种看法后来发展为14世纪的“冲力理论”。

14世纪,法国哲学家布里丹(Jean Buridan,1295—1358?)、阿尔伯特、尼克尔·奥里斯姆(Nicole Oresme,1320?—1382)等人提出“冲力理论”,他们认为:“推动者在推动一物体运动时,便对它施加某种冲力或某种动力,速度越大,冲力越大,冲力耗尽时,物体停止下来。”这一理论为意大利物理学家伽利略·伽利雷(Galileo Galilei,1564—1642)和英国物理学家艾萨克·牛顿(Isaac Newton,1643—1727)开辟了道路。 

17世纪,伽利略在其的著作中多次提出类似于惯性原理的说法。他分别于1632年和1638年,在《关于托勒密和哥白尼两大世界体系的对话》和《关于力学和位置运动的两门新科学的对话》中记录了理想斜面实验(一小球沿倾斜平台滚向水平面,表面越光滑小球滚得越远),并推理“如有一足够长而绝对光滑的表面,将没有东西(摩擦力)能阻碍小球运动,所以小球一直继续运动或者直到有东西(外力)阻碍它”,从而得到结论:“物体在自然状态下会维持原有运动而非趋于停止”。该结论打破了自亚里士多德以来约一千三百年间“力是维持物体运动的原因”的陈旧观念,但仍未摆脱其影响。该结论很接近惯性定律(牛顿第一运动定律又称惯性定律,其首先是由伽利略发现的)。

1644年,法国物理学家勒内·笛卡尔(Rene Descartes,1596—1650)在《哲学原理》中弥补了伽利略的不足。他明确地指出,除非物体受到外因的作用,物体将永远保持其静止或运动状态,并且还特地声明,惯性运动的物体永远不会使自己趋向曲线运动,而只保持在直线上运动。他把这条基本原理表述为两条定律:

①每一单独的物质微粒将继续保持同一状态,直到与其他微粒相碰被迫改变这一状态为止;

②所有的运动,其本身都是沿直线的。然而笛卡儿没有建立起他试图建立的那种能演绎出各种自然现象的体系,不过他的思想对牛顿对此类定律之后的总结产生了一定的影响。笛卡儿的最大贡献在于他第一个认识到:力是改变物体运动状态的原因。 

1662年,伽利略指出:“以任何速度运动着的物体,只要除去加速或减速的外因,此速度就可以保持不变。”笛卡尔也认为:“在没有外加作用时,粒子或者匀速运动,或者静止。”牛顿把这一假定作为牛顿第一运动定律,并将伽利略的思想进一步推广到有力作用的场合,提出了牛顿第二运动定律。

1664年,牛顿受到对碰撞问题研究较早的笛卡尔的影响,也开始研究二个球形非弹性刚体的碰撞问题。1665—1666年,牛顿又研究了二个球形刚体的碰撞问题。他没有把注意力集中在动量和动量守恒方面,而是把集中在物体之间的相互作用上。对于两刚体的碰撞,他提出:“在它们向彼此运动的时间中(就是它们相碰的瞬间),它们的压力处于最大值,……它们的整个运动是被此一瞬间彼此之间的压力所阻止,……只要这两个物体都不互相屈服,它们之间将会持有同样猛烈的压力,……它们将会像以前弹回之前彼此趋近那样多的运动相互离开。”

1668—1669年,荷兰物理学家克里斯蒂安·惠更斯(Christiaan Huygens,1629—1695)、沃里斯(willis)和英国物理学家克里斯托弗·雷恩(Christopher Wren,1632—1723)分别对碰撞问题也做了很多研究,并得出了一些重要的结论。其中,惠更斯的工作比较突出,他证明了两硬体在碰撞过程中同一方向的动量保持不变,纠正了笛卡尔不考虑动量具有方向性的错误,而且首次提出碰撞前后的动量守恒。牛顿在正式提出牛顿第三运动定律时,肯定了他们的工作,同时也指出了他们的局限性。牛顿认为:“雷恩和惠更斯的理论以绝对硬的物体为前提,而用理想弹性体可以得到更肯定的结果,并且用非理想弹性体,如压紧的木球、钢球和玻璃球做实验,消除误差后结果是一致的。”

1673年,法国物理学家马里奥特(EdmeMarotte,1620—1684)用两个单摆做碰撞实验,巧妙地测出了碰撞前后的瞬时速度。牛顿也重复做了此实验,他进一步讨论了空气阻力的影响及改进办法,并对结果进行了修正。

1684年8月起,在英国物理学家埃德蒙多·哈雷(EdmondHalley,1656—1742)的劝说下,牛顿开始写作《自然哲学的数学原理》,系统地整理手稿,重新考虑部分问题。1685年11月,形成了两卷专著。1687年7月5日,《原理》使用拉丁文出版。《原理》的绪论部分中的运动的公理或定律一节中提出了牛顿运动定律,摆脱了旧观念的束缚。1713年,《原理》出第2版;1725年,出第3版。 

19世纪后半期,德国物理学家古斯塔夫·罗伯特·基尔霍夫(Gustav Robert Kirchhoff,1824—1887)、奥地利及捷克物理学家恩斯特·马赫(Ernst Mach,1838—1916)、美国物理学家埃森布德(L. Eisenbud)、美国物理学家奥斯顿(N. Austern)等人对牛顿运动定律的表述均有论述,并提出自己的修正意见。其中,马赫在《发展中的力学》中,对牛顿运动定律做了比较全面的考察和分析整理;埃森布德在《关于经验的运动定律》 中、奥斯顿在《牛顿力学的表述》中,也提出了相似的新表述。但这些修正意见中有一部分受到质疑,质疑者包括瑞士及美国物理学家阿尔伯特·爱因斯坦(Albert Einstein,1879—1955)等。

1905年以来,爱因斯坦的相对论推翻了牛顿建立的大部分科学体系。爱因斯坦指出,牛顿运动定律在超出经典力学范围或质点、惯性参考系以及宏观、低速运动问题等适用条件时,不再成立。该部分内容已超出对牛顿运动定律发展简史的讨论范围,后续发展可参阅狭义相对论、广义相对论等词条。