目录

  • 1 蓄电池
    • 1.1 蓄电池的作用和构成
    • 1.2 蓄电池的容量及影响
    • 1.3 蓄电池的工作原理及特性
    • 1.4 蓄电池的维护和常见故障
  • 2 交流发电机
    • 2.1 交流发电机的构成、工作原理
    • 2.2 交流电机的使用与维修
  • 3 起动机
    • 3.1 起动机的构造与工作原理
    • 3.2 起动机传动结构与控制结构(一)
    • 3.3 起动机传动结构与控制结构(二)
    • 3.4 起动机的拆装与检测
  • 4 点火系
    • 4.1 汽车点火系统
    • 4.2 点火系统的主要零件
    • 4.3 磁感应式电子点火系统
    • 4.4 传统点火系的电路分析及检修
    • 4.5 电子点火系的电路分析及检修
  • 5 照明、信号、仪表系统
    • 5.1 照明系统
    • 5.2 信号系统
    • 5.3 仪表系统
  • 6 辅助电器系统
    • 6.1 风窗雨刮器及清洗装置
    • 6.2 电动车窗及电动底座椅
    • 6.3 电动车窗识图及拆检
  • 7 上海大众汽车电路识读
    • 7.1 上海大众汽车电路识读(一)
    • 7.2 上海大众汽车电路识读(二)
    • 7.3 上海大众汽车电路识读(三)
  • 8 汽车电子控制系统检测
    • 8.1 故障解码仪的综合使用(一)
    • 8.2 故障解码仪的综合使用(二)
  • 9 实践视频
    • 9.1 汽车电气及车身电控技术-丰田车型
      • 9.1.1 起动机的拆解
      • 9.1.2 故障诊断仪的使用方法
      • 9.1.3 空调、音响、车窗系统的使用方法
      • 9.1.4 交流发电机的拆解
      • 9.1.5 5000km保养
      • 9.1.6 交流发电机的复装
      • 9.1.7 电气系统故障-无法着车
      • 9.1.8 认识汽车照明装置
      • 9.1.9 认识汽车信号装置
      • 9.1.10 典型轿车的总体构造
      • 9.1.11 认识汽车仪表与报警装置
      • 9.1.12 汽车维修常用量具
      • 9.1.13 车轮的动力平衡检测
      • 9.1.14 电动刮水器的使用
      • 9.1.15 交流发电机零件的检测
      • 9.1.16 起动机的复装
      • 9.1.17 起动机零件的检测
      • 9.1.18 认识传统点火系统
      • 9.1.19 认识微机控制点火系统
      • 9.1.20 四轮定位仪检测
      • 9.1.21 蓄电池的检修与维护
起动机的构造与工作原理


起动机又叫马达,它将蓄电池的电能转化为机械能,驱动发动机飞轮旋转实现发动机的启动。

简介

起动机按照工作原理分为直流电起动机、汽油起动机、压缩空气起动机等。内燃机上大都采用的是直流电起动机,其特点是结构紧凑、操作简单且便于维护。汽油起动机是一种带有离合器与变速机构的小型汽油机,功率大且受气温影响较小,可起动大型内燃机,并适用于高寒地带。压缩空气起动机分为两类,一种是将压缩空气按照工作顺序打入气缸,一种是使用气动马达驱动飞轮。压缩空气起动机的用途接近于汽油起动机,通常用于大型内燃机的起动。

直流电起动机是由直流串激电动机、操纵机构和离合机构所组成。它专门启动发动机,需要强大的转矩,因此要通过的电流量很大,达到几百安培。

直流电动机在低转速时扭矩大,转速高时扭矩逐渐变小,很适合做起动机之用。

起动机采用直流串激式电动机,转子及定子部分都是用比较粗的矩形截面铜线绕制;驱动机构采用减速齿轮结构;操纵机构采用电磁磁吸方式。

起动机

众所周知,发动机的起动需要外力的支持,汽车启动机就是在扮演着这个角色。大体上说,启动机用三个部件来实现整个启动过程。直流串激电动机引入来自蓄电池的电流并且使起动机的驱动齿轮产生机械运动;传动机构将驱动齿轮啮合入飞轮齿圈,同时能够在发动机起动后自动脱开;启动机电路的通断则由一个电磁开关来控制。其中,电动机是起动机内部的主要部件,它的工作原理就是我们在初中物理中所接触到的以安培定律为基础的能量的转化过程,即通电导体在磁场中受力的作用。电动机包括必要的电枢、换向器、磁极、电刷、轴承和外壳等部件。

发动机在以自身动力运转之前,必须借助外力旋转。发动机借助外力由静止状态过渡到能自行运转的过程,称为发动机的起动。发动机常用的起动方式有人力起动、辅助汽油机起动和电力起动三种形式。人力起动采用绳拉或手摇的方式,简单但不方便,而且劳动强度大,只适用于一些小功率的发动机,在一些汽车上仅作为后备方式保留着;辅助汽油机起动主要用在大功率的柴油发动机上;电力起动方式操作简便,起动迅速,具有重复起动能力,并且可以远距离控制,因此被现代汽车广泛采用。

机构特点

P11C发动机减速起动机具有以下显著特点:

①动力输出结构分为电枢轴和传动轴两部分。电枢轴两端用滚珠轴承支承,负荷分布均匀,使用时间长,不易磨损,电枢较短,不易出现电枢轴弯曲,磨坏磁场绕组的情况。

②采用了减速装置,在转子和起动齿轮之间,安装有减速齿轮,起动电动机传递给起动齿轮的扭距就会增大。利用电磁开关,使得承担电动机(经减速齿轮后)的动力输出是起动齿轮和起动齿轮轴,而啮合器部分不动。输出功率小的起动机,常采用外啮合方式,输出功率大的起动机采用内啮合方式。

③减速起动机采用电磁开关操纵,有些备有辅助开关(或称副开关)。它的作用是防止烧坏电磁开关和电门(起动)开关。分级接通电源,大大降低了起动机损坏的可能性,从而延长了起动机的使用寿命。

④减速起动机的体积和重量大约是传统起动机的一半,节约了原材料,同时拆装修理很方便。

⑤减速起动机的磁极对数与传统的起动机一样,但磁场线圈绕组常采用小导线多根串联的方法,电枢绕组的绕法虽与传统的原理相同,但制造工艺先进。

电动机构成

电动机由磁场(定子)、电枢(转子)和整流子组成,为了增大扭矩采用多极磁场,常见有4个磁场。当电流通过电枢线圈时,整个线圈会受到一个转矩而转动。由于直流电动机通电后会产生一种反电动势,并与发动机转速成正比,与扭矩成反比,因此能满足发动机起动时的要求。起动机起动电流很大,因此,操作时启动时间一定要短。

分类

减速起动机

在起动机的电枢轴与驱动齿轮之间装有齿轮减速器的起动机,称为减速起动机。

串励式直流电动机的功率与电动机的转矩和转速成正比。可见,当提高发动机转速的同时降低其转矩时,可以保持起动机功率不变。因此,当采用高速、低扭矩的串励式直流电动机作为起动机时,在功率相同的情况下,可以使起动机的体积和重量大大减小。但是,起动机的转矩过低,不能满足起动发动机的要求。为此,在起动机中采用高速、低转矩的直流电动机时,在电动机的电枢轴和驱动齿轮之间安装齿轮减速器,可以降低电动机转速的同时提高其转矩。

减速起动机的齿轮减速器有外啮合式、内啮合式和行星齿轮式等三种不同形式。

外啮合式减速起动机,其减速机构在电枢轴和起动机驱动齿轮之间利用惰轮作中间传动,且电磁开关铁心与驱动齿轮同轴心,直接推动驱动齿轮进入啮合,无需拨叉。因此,起动机的外形与普通的起动机有较大的差别。外啮合式减速机构的传动中心距较大,因此受到起动机构的限制,其减速比不能太大,一般不大于5,多用于小功率的起动机上。

内啮合式减速起动机,其减速机构传动中心距小,可有较大的减速比,故适用于较大功率的起动机。但内啮合式减速起动机构噪声较大,驱动齿轮仍需拨叉拨动进行啮合,因此起动机的外形和普通起动机相似。

行星齿轮式减速起动机减速机构结构紧凑。传动比大、效率高。由于输出轴与电枢轴同轴线、同旋向,电枢轴无径向载荷,振动小,因而整体尺寸小。

永磁起动机

以永磁材料作为磁极的起动机,称为永磁起动机。它取消了传统起动机中的励磁绕组和磁极铁心,使起动机的结构简化,体积和质量大大减小,可靠性提高,并节省了金属材料。

二、发动机的起动性能和工作特性 

发动机的起动性能评价指标有: 

(1)起动转矩 

(2)最低起动转速 

(3)起动功率 

(4)起动极限温度 

1、起动转矩 

起动机要有足够大的转矩来克服发动机初始转动时的各种阻力。 起动阻力包括: (1)摩擦阻力矩 (2)压缩阻力矩 (3)惯性阻力矩

2、最低起动转速 

(1)在一定温度下,发动机能够起动的最低曲轴转速。汽油机一般约为50~70r/min,最好70~100 r/min以上。 

(2)起动机传给发动机的转速要大于发动机的最低转速: 

若低于这个转速,汽油泵供油不足,气流速度过低,可燃混合气形成不充分,还会使压缩行程的散热损失和漏气损失增加,导致发动机不能起动。 

3、起动功率 

起动机所具有的功率应和发动机起动所必需的起动功率相匹配。 而蓄电池的容量与起动机的容量应成正比 

p=(450~600)p/u 

4、起动极限温度 

当环境温度低于起动极限温度时,应采取起动辅助措施: (1)加大蓄电池容量 (2)进气加热 (3)电喷车低温补偿

起动机的工作特性

1.起动机工作特性图 

2.分析 

当i=0时,m=0,所以,p=0,转速n达到最大,n=nmax(起动机空载); 

当i=imax时,n=0,所以,p=0,输出转矩达到最大m=mmax(起动机制动)。 

空载和制动的工作情况,常用来检验起动机的故障: 空载时转速低于规定值,同时电流大,说明有机械故障; 制动实验时,电源电压和电流正常,转矩下降,有电路故障。


3.影响起动机工作特性的因素 

(1)蓄电池的容量和充电情况 

容量大,充电充足,内阻小,供给起动机电流大,起动机的功率、转速、制动力矩都大。 (2)起动电路的电阻影响 

起动机内部电阻和起动线路电阻越大,起动机得输出功率、转速、制动力矩均会降低。 (3)环境温度的影响 

环境温度低时,起动性能不好。

三、通用型起动机的构造

四、电动机转矩自动调节特性 

电动机的电磁转矩m取决于磁通φ、 电枢电流ia的乘积,即 

m= cmφia 

其中cm-电机结构常数 1、反电动势 

直流电动机拖动负载,当负载发生变化时,电动机的电枢转速、电枢电流、电磁转矩均会自动的作相应的变化,以满足不同负载的需要。其原理如下: 

通电的线圈在磁场中受力而转动,运动的线圈切割磁力线产生电动势,电动势的方向和线圈电流方向相反,电动势的大小为: 

e反=ceφn 

其中,ce--电机结构常数;φ--磁极磁通;n--电枢转速。 2、电动机工作时,电压平衡方程式为: 

ub=e反+iara 

该公式称为电动机发电机一体公式 

即电动机在一定条件下可以变成发电机,用于电机制动和储能 3、转矩自动调节过程 

电枢电流为:ia=(ub- e反)/ra 

分析: 

当负载↓→轴上阻力矩↓→电枢转速↑→e反↑→ia↓→电磁转矩↓→直至电磁转矩减至与阻转矩相等→电机拖动负载以较高转速平稳运转; 

当负载↑→轴上阻力矩↑→电枢转速↓→e反↓→ia↑→电磁转矩↑→直至电磁转矩增至与阻转矩相等→电机拖动负载以较低转速平稳运转。