目录

  • 1 绪论
    • 1.1 绪论
  • 2 运动的能量代谢
    • 2.1 第一节 生物能量学概要
    • 2.2 第二节 运动状态下的能量代谢
  • 3 肌肉活动
    • 3.1 第一节 肌肉的特性
    • 3.2 第二节 肌肉收缩与舒张原理
    • 3.3 第三节 肌肉的收缩形式与力学特征
    • 3.4 第四节 肌纤维类型与运动能力
  • 4 躯体运动的神经调控
    • 4.1 第一节 神经系统基本组件的一般功能
    • 4.2 第二节 神经系统的感觉分析功能
    • 4.3 第三节 躯体运动的脊髓和脑干调控
    • 4.4 第四节 高位中枢对躯体运动的调节
  • 5 运动与内分泌
    • 5.1 第一节 概述
    • 5.2 第二节 主要内分泌腺的内分泌功能
    • 5.3 第三节 激素对运动的反应、适应与调节
  • 6 运动与血液
    • 6.1 第一节 血液的组成与特性
    • 6.2 第二节 血液的功能
    • 6.3 第三节 运动对血液成分的影响
  • 7 运动与呼吸
    • 7.1 第一节 肺通气
    • 7.2 第二节 气体的交换
    • 7.3 第三节 呼吸运动的调节
  • 8 运动与血液循环
    • 8.1 第一节 心脏生理
    • 8.2 第二节 血管生理
    • 8.3 第三节 心血管活动的调节
    • 8.4 第四节 运动时心血管功能的变化
  • 9 运动与免疫
    • 9.1 第一节 免疫学的基本知识和理论
    • 9.2 第二节 身体运动对免疫机能的影响
    • 9.3 第三节 运动免疫调理
  • 10 酸碱平衡
    • 10.1 第一节 酸碱物质
    • 10.2 第二节 酸碱平衡的调节
    • 10.3 第三节 运动时机体酸碱平衡的调节
  • 11 肌肉力量
    • 11.1 第一节 肌肉力量的生理学基础
    • 11.2 第二节 肌肉力量的训练
    • 11.3 第三节 肌肉力量的检测与评价
  • 12 有氧工作能力
    • 12.1 第一节 有氧耐力的生理学基础
    • 12.2 第二节 有氧耐力的训练
    • 12.3 第三节 有氧耐力的检测及其评定
  • 13 速度和无氧耐力
    • 13.1 第一节 速度
    • 13.2 第二节 无氧耐力
  • 14 平衡、灵敏与柔韧
    • 14.1 第一节 平衡
    • 14.2 第二节 灵敏
    • 14.3 ​第三节 柔韧
  • 15 运动过程中人体机能状态的变化
    • 15.1 第一节 赛前状态
    • 15.2 第二节 进入工作状态及稳定状态
    • 15.3 第三节 运动性疲劳
    • 15.4 第四节 恢复过程
  • 16 运动技能学习
    • 16.1 第一节 运动技能形成的生物学基础
    • 16.2 第二节 运动技能形成过程及发展
    • 16.3 第三节 运动技能学习过程中应注意的生理学问题
  • 17 年龄 女性与运动
    • 17.1 第一节 儿童少年与运动
    • 17.2 第二节 女子与运动
    • 17.3 第三节 老年人与运动
  • 18 肥胖与体重控制与运动处方
    • 18.1 第一节 肥胖与体成分
    • 18.2 第二节肥胖与运动减肥
  • 19 运动与环境
    • 19.1 第一节 冷热环境
    • 19.2 第二节 水环境
    • 19.3 第三节 高原环境
    • 19.4 第四节 大气环境
    • 19.5 第五节 生物节律
  • 20 运动生理学总复习
    • 20.1 运动生理学总复习
  • 21 绪论(英文版)
    • 21.1 Introduction
  • 22 肌肉的结构和功能(英文版)
    • 22.1 Chapter 1 Structure and Function of Exercising Muscle
  • 23 运动与能量代谢(英文版)
    • 23.1 Chapter 2 Fuel for Exercise Bioenergetics and Muscle Metabolism
  • 24 肌肉收缩的神经控制
    • 24.1 Chapter 3  Neural Control of Exercising Muscle
  • 25 激素与运动
    • 25.1 Chapter 4 Hormonal Control During Exercise
Chapter 3  Neural Control of Exercising Muscle

Chapter 3

Neural Controlof Exercising Muscle

Structure and Function of the Nervous System

  • Neurons are excitable tissues because they have the ability to respond to various types of stimuli and convert them to an electrical signal or nerve impulse.

  • A neuron's RMP of about -70 mV results from the uncqual separation of positivcly charged sodium and poassumions, with more potassium inside the membrane and more sodium on the outside.

  • The RMP is maintained by actionsof the sodium- -potassium pump, coupled with low sodium permeability and highpotassium permeability of the neuron membrane.

  • Any change that makes the membranepotential less negative results in depolarization. Any change making thispotential more negative is a hyperpolarization. These changes occur when iongates in the membrane open, permitting more ions to move across the membrane.

  • If the membrane is depolarized by15 to 20 mV, the depolarization threshold is reached and a rached and an actionpotential rsults. Acion potentias are not generated if the threshold is notmet.

  • In myelinated neurons, the impulsetravels through the axon by jumping between nodes of Ranvier (gaps between thecells that form the myelin sheath). 'This process,saltatory conduction, resultsin nerve transmission rates 5 to 50 times faster than in unmyelinated fibers ofthe same size. Impulses also travel faster in neurons of larger diameter.

Synapses

  • Neurons communicate with eachother across synapses composed of the axonterminals of the presynaptic neuron,the postsynaptic receptors on the dendrite or cell body of the postsynapticneuron, and the synaptic cleft between the two neurons.

  • A nerve impulsecauses neurotransmitters to be released from the presynaptic axonterminal intothe synaptic cleft.

  • Neurotransmittersdiffuse across the cleft and bind to the postsynaptic receptors.

  • Once sufficientneurotransmitters are bound, the impulse is successfully transmitted and theneurotransmitter is then destroyed by enzymes, is removed by reuptake into thepresynaptic terminal for future use, or diffuses away from the synapse.

  • Neurotransmitterbinding at the postsynaptic receptors opens ion gates in the given membrane andcan cause depolarization (excitation) or hyperpolarization (inhibition),depending on the specific neurotransmitter and the receptors to which it binds.

  • Neuronscommunicate with muscle fibers at neuromuscular junctions. A neuromuscularjunction involves presynaptic axon terminals, the synaptic cleft, and motorend-plate receptors on the plasmalemma of the muscle fiber and functions muchlike a neural synapse.

  • Theneurotransmitters most important in regulating exercise responses are acetylcholinein the somatic nervous system and norepinephrine in the autonomic nervoussystem.

  • Receptors on the motorend plates of the neuromuscular junction are a special subtype of cholinergicreceptors called muscarinic receptors. They bind the primary neurotransmitterinvolved in excitation of muscle fibers, acetylcholine.

 

Central Nervous System

  • The CNS includes the brain and thespinal cord.

  • The four major divisions of thebrain are the cerebrum, the diencephalon, the cerebellum, and the brain stem.

  • The cerebral cortex is theconscious brain. The primary motor cortex, located in the frontal lobe, is thecenter of conscious motor control. .

  • The basal ganglia, in the cerebralwhite matter, help initiate some movements (sustained and repetitive ones) andhelp control posture and muscle tone.

  • The diencephalon includes thethalamus, which receives all sensory input entering the brain, and thehypothalamus, which is a major control center for homeostasis.

  • The cerebellum, which is connectedto numerous parts of the brain, is critical for coordinating movement. It is anintegration center that decides how to best execute the desired movement, giventhe body's current position and the muscles current status.

  • The brain stem is composed of themidbrain, the pons, and the medulla oblongata.

  • The spinal cord contains bothsensory and motor fibers that transmit action potentials between the brain andthe periphery.

 

Peripheral Nervous System

  • Sensory-motor integration is theprocess by which the PNS relays sensory input to the CNS and the CNS interpretsthis information and then sends out the appropriate motor signal to elicit thedesired motor response.

  • The level of nervous systemresponse to sensory input varies according to the complexity of movementnecessary. Most simple reflexes are handled by the spinal cord, whereas complexreactions and movements require activation of higher centers in the brain.

  • Sensory input can terminate atvarious levels of the CNS. Not all of this information reaches the brain.

  • Reflexes are the simplest form ofmotor control. These are not conscious responses. For a given sensory stimulus,the motor response is always identical and instantaneous.

  • Muscle spindles trigger reflexivemuscle action when stretched.

  • Golgi tendon organs trigger areflex that inhibits contraction if the tendon fibers are stretched from highmuscle tension.

 

In closing

In this chapter we examined howthe nervous system is organized and how that organization functions to controlmovement. We covered the central nervous system as it relates to movement andthe sensory and effector arms of the peripheral nervous system. We have seenhow muscles respond to neural stimulation, whether through reflexes or undercomplex control of the higher brain centers, and the role of individual motorunits in determining this response. Thus, we have learned how the bodyfunctions to allow people to move. In the next chapter, we examine the role ofhormones in the body's response to exercise.

 

Study Questions

1. What are the major divisions of the nervous system? W hat are their major functions?

2. Namethe different anatomical parts of a neuron and discuss their function.

3.Explain the resting membrane potential. What causes it? How is it maintained?

4.Describe an action potential. What is required before an action potential isactivated?

5.Explainhow an action potential is transmitted from a presynaptic neuron to apostsynaptic neuron. Describe a synapse and a neuromuscular junction.

6. What brain centers have major roles incontrolling movement, and what are theseroles?

7.How dothe sympathetic and parasympathetic systems differ? What is their significancein performing physical activity?

8.Explain how reflex movement occurs in response to touching a hot object.

9.Describe the role of the muscle spindle in controlling muscle contraction.

10.Describe the role of the Golgi tendon organ in controlling muscle contraction.