目录

  • 1 绪论
    • 1.1 绪论
  • 2 运动的能量代谢
    • 2.1 第一节 生物能量学概要
    • 2.2 第二节 运动状态下的能量代谢
  • 3 肌肉活动
    • 3.1 第一节 肌肉的特性
    • 3.2 第二节 肌肉收缩与舒张原理
    • 3.3 第三节 肌肉的收缩形式与力学特征
    • 3.4 第四节 肌纤维类型与运动能力
  • 4 躯体运动的神经调控
    • 4.1 第一节 神经系统基本组件的一般功能
    • 4.2 第二节 神经系统的感觉分析功能
    • 4.3 第三节 躯体运动的脊髓和脑干调控
    • 4.4 第四节 高位中枢对躯体运动的调节
  • 5 运动与内分泌
    • 5.1 第一节 概述
    • 5.2 第二节 主要内分泌腺的内分泌功能
    • 5.3 第三节 激素对运动的反应、适应与调节
  • 6 运动与血液
    • 6.1 第一节 血液的组成与特性
    • 6.2 第二节 血液的功能
    • 6.3 第三节 运动对血液成分的影响
  • 7 运动与呼吸
    • 7.1 第一节 肺通气
    • 7.2 第二节 气体的交换
    • 7.3 第三节 呼吸运动的调节
  • 8 运动与血液循环
    • 8.1 第一节 心脏生理
    • 8.2 第二节 血管生理
    • 8.3 第三节 心血管活动的调节
    • 8.4 第四节 运动时心血管功能的变化
  • 9 运动与免疫
    • 9.1 第一节 免疫学的基本知识和理论
    • 9.2 第二节 身体运动对免疫机能的影响
    • 9.3 第三节 运动免疫调理
  • 10 酸碱平衡
    • 10.1 第一节 酸碱物质
    • 10.2 第二节 酸碱平衡的调节
    • 10.3 第三节 运动时机体酸碱平衡的调节
  • 11 肌肉力量
    • 11.1 第一节 肌肉力量的生理学基础
    • 11.2 第二节 肌肉力量的训练
    • 11.3 第三节 肌肉力量的检测与评价
  • 12 有氧工作能力
    • 12.1 第一节 有氧耐力的生理学基础
    • 12.2 第二节 有氧耐力的训练
    • 12.3 第三节 有氧耐力的检测及其评定
  • 13 速度和无氧耐力
    • 13.1 第一节 速度
    • 13.2 第二节 无氧耐力
  • 14 平衡、灵敏与柔韧
    • 14.1 第一节 平衡
    • 14.2 第二节 灵敏
    • 14.3 ​第三节 柔韧
  • 15 运动过程中人体机能状态的变化
    • 15.1 第一节 赛前状态
    • 15.2 第二节 进入工作状态及稳定状态
    • 15.3 第三节 运动性疲劳
    • 15.4 第四节 恢复过程
  • 16 运动技能学习
    • 16.1 第一节 运动技能形成的生物学基础
    • 16.2 第二节 运动技能形成过程及发展
    • 16.3 第三节 运动技能学习过程中应注意的生理学问题
  • 17 年龄 女性与运动
    • 17.1 第一节 儿童少年与运动
    • 17.2 第二节 女子与运动
    • 17.3 第三节 老年人与运动
  • 18 肥胖与体重控制与运动处方
    • 18.1 第一节 肥胖与体成分
    • 18.2 第二节肥胖与运动减肥
  • 19 运动与环境
    • 19.1 第一节 冷热环境
    • 19.2 第二节 水环境
    • 19.3 第三节 高原环境
    • 19.4 第四节 大气环境
    • 19.5 第五节 生物节律
  • 20 运动生理学总复习
    • 20.1 运动生理学总复习
  • 21 绪论(英文版)
    • 21.1 Introduction
  • 22 肌肉的结构和功能(英文版)
    • 22.1 Chapter 1 Structure and Function of Exercising Muscle
  • 23 运动与能量代谢(英文版)
    • 23.1 Chapter 2 Fuel for Exercise Bioenergetics and Muscle Metabolism
  • 24 肌肉收缩的神经控制
    • 24.1 Chapter 3  Neural Control of Exercising Muscle
  • 25 激素与运动
    • 25.1 Chapter 4 Hormonal Control During Exercise
Chapter 2 Fuel for Exercise Bioenergetics and Muscle Metabolism

Chapter 2

Fuel for Exercise: Bioenergetics and Muscle Metabolism

Energy Substrates

Energy for cell metabolism is derived from three substrates in foods: carbohydrate,fat, and protein. Proteins provide little of the energy used for metabolism under normal conditions.With in cells, the usable storage form of the energy we derive from food is thehigh-energy compound adenosine triphosphate or ATP. Carbohydrateand protein each provide about 4.1 kcal energy per gram, compared with about9.4 kcal/g for fat.

Carbohydrate,stored as glycogen in muscle and the liver, is more quickly accessible as an energysource than either protein or fat. Glucose, directly from food or brokendownfrom stored glycogen, is the usable form of carbohydrate.

Fat,stored as triglycerides in adipose tissue, is an ideal storage form of energy.Free fatty acids from the breakdown of triglycerides are converted to energy.

Carbohydratestores in the liver and skeletal muscle are limited to about 2,500 to 2,600kcal of energy, or the equivalent of the energy needed for about 40 km (25mi)of running. Fat stores can provide more than 70,000 kcal of energy.

Enzymes control the rate of metabolism and energy production. Enzymes can speed up the over all reaction by lowering the initial activation energy and by catalyzingvarious steps along the pathway.

Enzymes can be inhibited through negative feedback of subsequent pathway by products(or often ATP), slowing the overall rate of the reaction. This usually involvesa particular enzyme located early in the pathway called the rate-limitingenzyme.

The Basic Energy Systems

Cells can store only very limited amountsof ATP and must constantly generate new ATP to provide needed energy for allcellular metabolism, including muscle contraction.Cells generate ATP throughany one of (or a combination of) three metabolic path ways: 

1. The ATP-PCr system

2. The glycolytic system (glycolysis)

3. The oxidative system (oxidativephosphorylation)

The first two systems can act inthe absence of oxygen and are jointly termed anaerobic metabolism. The third system requires oxygen and therefore comprises aerobic metabolism.

 Interaction of the Energy Systems The three energy systems do not work independently of one another, and no activity is 100% supported by any singleenergy system. When a person exercises at the highest intensity possible, from the shortest sprints (less than 10 s) to endurance events (greater than 30min), each of the energy systems is contributing to the total energy needs ofthe body. Generally one energy system dominates energy production, except whenthere is a transition from the predominance of one energy system to another. Asan example, ina 10s, 100 m sprint, the ATP-PCr system is the predominant energysystem, but both the anaerobic glycolytic and the oxidative systems provide asmall portion of the energy needed.At the other extreme, in a 30 min, 10,000 m(10,936 yd) run, the oxidative system is predominant, but both the ATP-PCr andanaerobic glycolytic systems contribute some energy as well.

The Oxidative Capacity of Muscle

We have seen that the processes ofoxidative metabolism have the highest energy yields. It would be ideal if theseprocesses always functioned at peak capacity. But, as with all physiologicalsystems, they operate within certain constraints. The oxidative capacity ofmuscle (QO2) is a measure of its maximal capacity to use oxygen. Thismeasurement is made in the laboratory, where a small amount of muscle tissuecan be tested to determineits capacity to consume oxygen when chemicallystimulated to generate ATP. A muscle's oxidative capacity ultimately depends onits oxidative enzyme concentrations, fiber type composition, and oxygenavailability.

In Closing

In this chapter, we focused onenergy metabolism and the synthesis of the storage form of energy in the body,ATP. We described in some detail the three basic energy systems used togenerate ATP and their regulation and interaction. Finally, we highlighted theimportant role that oxygen plays in the sustained generation of ATP forcontinued muscle contraction and the three fiber types found in human skeletalmuscle. We next look at the neural control of exercising muscle.

Study Questions

1. What is ATP, how is it formed, and how does it provide energy during metabolism?

2.What is the primary substrate used to provide energy at rest? During high-intensity exercise?

3. What is the role of PCr in energy production, and what are its limitations? Describethe relationship between muscle ATP and PCr during sprint exercise.

4.Describe the essential characteristics of the three energy systems.

5. Why are the ATP-PCr and glycolytic energy systems considered anaerobic?

6. Whatrole does oxygen play in the process of aerobic metabolism?

7.Describethe by-products of energy production from ATP -PCr, glycolysis, and oxidation.