目录

  • 1 绪论
    • 1.1 绪论
  • 2 运动的能量代谢
    • 2.1 第一节 生物能量学概要
    • 2.2 第二节 运动状态下的能量代谢
  • 3 肌肉活动
    • 3.1 第一节 肌肉的特性
    • 3.2 第二节 肌肉收缩与舒张原理
    • 3.3 第三节 肌肉的收缩形式与力学特征
    • 3.4 第四节 肌纤维类型与运动能力
  • 4 躯体运动的神经调控
    • 4.1 第一节 神经系统基本组件的一般功能
    • 4.2 第二节 神经系统的感觉分析功能
    • 4.3 第三节 躯体运动的脊髓和脑干调控
    • 4.4 第四节 高位中枢对躯体运动的调节
  • 5 运动与内分泌
    • 5.1 第一节 概述
    • 5.2 第二节 主要内分泌腺的内分泌功能
    • 5.3 第三节 激素对运动的反应、适应与调节
  • 6 运动与血液
    • 6.1 第一节 血液的组成与特性
    • 6.2 第二节 血液的功能
    • 6.3 第三节 运动对血液成分的影响
  • 7 运动与呼吸
    • 7.1 第一节 肺通气
    • 7.2 第二节 气体的交换
    • 7.3 第三节 呼吸运动的调节
  • 8 运动与血液循环
    • 8.1 第一节 心脏生理
    • 8.2 第二节 血管生理
    • 8.3 第三节 心血管活动的调节
    • 8.4 第四节 运动时心血管功能的变化
  • 9 运动与免疫
    • 9.1 第一节 免疫学的基本知识和理论
    • 9.2 第二节 身体运动对免疫机能的影响
    • 9.3 第三节 运动免疫调理
  • 10 酸碱平衡
    • 10.1 第一节 酸碱物质
    • 10.2 第二节 酸碱平衡的调节
    • 10.3 第三节 运动时机体酸碱平衡的调节
  • 11 肌肉力量
    • 11.1 第一节 肌肉力量的生理学基础
    • 11.2 第二节 肌肉力量的训练
    • 11.3 第三节 肌肉力量的检测与评价
  • 12 有氧工作能力
    • 12.1 第一节 有氧耐力的生理学基础
    • 12.2 第二节 有氧耐力的训练
    • 12.3 第三节 有氧耐力的检测及其评定
  • 13 速度和无氧耐力
    • 13.1 第一节 速度
    • 13.2 第二节 无氧耐力
  • 14 平衡、灵敏与柔韧
    • 14.1 第一节 平衡
    • 14.2 第二节 灵敏
    • 14.3 ​第三节 柔韧
  • 15 运动过程中人体机能状态的变化
    • 15.1 第一节 赛前状态
    • 15.2 第二节 进入工作状态及稳定状态
    • 15.3 第三节 运动性疲劳
    • 15.4 第四节 恢复过程
  • 16 运动技能学习
    • 16.1 第一节 运动技能形成的生物学基础
    • 16.2 第二节 运动技能形成过程及发展
    • 16.3 第三节 运动技能学习过程中应注意的生理学问题
  • 17 年龄 女性与运动
    • 17.1 第一节 儿童少年与运动
    • 17.2 第二节 女子与运动
    • 17.3 第三节 老年人与运动
  • 18 肥胖与体重控制与运动处方
    • 18.1 第一节 肥胖与体成分
    • 18.2 第二节肥胖与运动减肥
  • 19 运动与环境
    • 19.1 第一节 冷热环境
    • 19.2 第二节 水环境
    • 19.3 第三节 高原环境
    • 19.4 第四节 大气环境
    • 19.5 第五节 生物节律
  • 20 运动生理学总复习
    • 20.1 运动生理学总复习
  • 21 绪论(英文版)
    • 21.1 Introduction
  • 22 肌肉的结构和功能(英文版)
    • 22.1 Chapter 1 Structure and Function of Exercising Muscle
  • 23 运动与能量代谢(英文版)
    • 23.1 Chapter 2 Fuel for Exercise Bioenergetics and Muscle Metabolism
  • 24 肌肉收缩的神经控制
    • 24.1 Chapter 3  Neural Control of Exercising Muscle
  • 25 激素与运动
    • 25.1 Chapter 4 Hormonal Control During Exercise
Chapter 1 Structure and Function of Exercising Muscle

Chapter 1

Structure and Function of Exercising Muscle

When the heart beats, when partially digested food moves through the intestines, and when the body moves in any way, muscle is involved. These many and varied functions of the muscular system are performed by three distinct types of muscle : smooth muscle, cardiac muscle, and skeletal muscle.


Anatomy of Skeletal Muscle

An individual muscle cell is called a muscle fiber.

Muscle fibers have a cell membrane and the same organelles mitochondria, lysosomes, and so on- -as other cell types but are uniquely multinucleated. .

A muscle fiber is enclosed by a plasma membranecalled the plasmalemma.

The cytoplasm of a muscle fiber is called thesarcoplasm.

The extensive tubule network found in the sarcoplasmincludes T-tubules, which allow communication and transport of   substances throughout the muscle fiber, andthe SR, which stores calcium.

The sarcomere is the smallest functional unit of amuscle.

ThickFilaments        Thin Filaments

The mechanism through which the molecule titin acts during muscle contraction.Titin acts as a spring element to increase the force generated and resistsoverstretch to prevent sarcomere damage.

 Myofibrils are composed of sarcomeres, thebasic contractile units of a muscle.

A sarcomere is composed of two different-sized filaments, thick and thin filaments, which are responsible for musclecontraction.

Myosin, the primary protein of the thickfilament, is composed of two protein strands, each folded into a globular headat one end.

The thin filament is composed of actin,tropomyosin, and troponin. One end of each thin filament is attached to aZ-disk.


Muscle Fiber Contraction

The sequence of events leading to muscleaction, known as excitation-contraction coupling.

(a) In response to an action potential, amotor neuron releases acetylcholine (ACh), which crosses the synaptic cleft andbinds to receptors on the plasmalemma. If enough ACh binds, an action potentialis generated in the muscle fiber.

(b) The action potential triggers the releaseof calcium ions (Ca2+) from the terminal cisternae of thesarcoplasmic reticulum into the sarcoplasm.

(c) The Ca2+ binds to troponin onthe actin filament, and the troponin pulls tropomyosin off the active sites,allowing myosin heads to attach to the actin filament.

The Sliding Filament Theory: How Muscles Create Movement


When muscle contracts, muscle fibers shorten. How do they shorten? The explanation for this phenomenon is termed the sliding filament theory. When the myosincross-bridges are activated, they bind with actin, resulting in aconformational change in the cross-bridge, which causes the myosin head to tiltand to drag the thin filament toward the center of the sarcomere .This tilting of the head is referred to as the power stroke. Thepulling of the thin filament past the thick filament shortens the sarcomere andgenerates force. When the fibers are not contracting, the myosin head remainsin contact with the actin molecule, but the molecular bonding at the site isweakened or blocked by tropomyosin.