目录

  • 1 学习指南
    • 1.1 教学纲要
    • 1.2 教学计划
    • 1.3 考核方案
    • 1.4 电子教材
  • 2 无人机概念
    • 2.1 无人机定义
    • 2.2 无人机的特点
    • 2.3 无人机在军事上的用途
    • 2.4 无人机在民用上的用途
    • 2.5 无人机系统的组成
  • 3 无人机飞行控制概述
    • 3.1 飞行控制的分类
    • 3.2 无人机飞行控制系统的基本原理
  • 4 测量与传感器
    • 4.1 空气动力学参量的测量
    • 4.2 惯性量的测量
    • 4.3 方位角的测量
  • 5 舵机舵回路与控制系统
    • 5.1 飞机操纵系统
    • 5.2 舵机的工作原理
    • 5.3 控制系统的基本概念
    • 5.4 控制系统的数学模型
      • 5.4.1 控制系统微分方程的建立及传递函数
      • 5.4.2 控制系统结构图及等效变换
      • 5.4.3 自动控制系统的传递函数及信号流图
    • 5.5 舵回路
  • 6 固定翼无人机飞行控制系统
    • 6.1 固定翼无人机飞控系统概述
    • 6.2 飞行姿态控制系统
    • 6.3 高度的稳定与控制
    • 6.4 飞行速度的稳定与控制
    • 6.5 电传操纵系统
  • 7 多旋翼无人机飞行控制系统
    • 7.1 多旋翼无人机飞行控制系统的基本概念
    • 7.2 多旋翼无人机的飞行姿态的数学表示
    • 7.3 多旋翼无人机动力系统建模
    • 7.4 多旋翼无人机PID控制和卡尔曼滤波
    • 7.5 多旋翼无人机的自动飞行控制技术
  • 8 无人机导航及测控系统
    • 8.1 惯性导航系统
    • 8.2 卫星导航系统
    • 8.3 无人机测控系统概述
    • 8.4 任务规划与航迹规划
    • 8.5 无人机测控系统
  • 9 无人机飞行控制系统核心软硬件
    • 9.1 ARM CortexM4架构
    • 9.2 STM32F4系列微控制器
    • 9.3 实时操作系统简介
    • 9.4 FreeRTOS实时操作系统
    • 9.5 飞行控制系统的定时器
  • 10 无人机飞行控制系统传感器
    • 10.1 飞控系统的传感器
    • 10.2 ST微控制器的I2C驱动
    • 10.3 红外传感器的介绍
    • 10.4 红外传感器的安装
    • 10.5 红外传感器的测试
    • 10.6 红外传感器的应用
    • 10.7 超声波传感器的介绍
    • 10.8 超声波传感器的安装
    • 10.9 超声波传感器的测试
    • 10.10 超声波传感器的应用
  • 11 无人机飞行控制系统PID控制算法
    • 11.1 控制理论与PID线性控制系统原理
    • 11.2 飞控算法PID框架设计
    • 11.3 飞控算法外环、内环PID实现及信号滤波
    • 11.4 课程总结复习
  • 12 无人机飞行控制技术课程实验
    • 12.1 实验一  无人机飞行控制系统典型地面站安装与使用
    • 12.2 实验二  无人机飞行控制系统APM PIXHAWK飞控调试
    • 12.3 实验三  无人机飞行控制系统中MPU6050数据的读取与显示
    • 12.4 实验四  无人机飞行控制系统中卡尔曼滤波及直流电动机PWM的调节方法及PID调节步骤
  • 13 无人机飞行控制技术课程复习题
    • 13.1 填空题
    • 13.2 选择题
    • 13.3 判断题
    • 13.4 简答题
    • 13.5 计算题
    • 13.6 资料题
  • 14 扩充知识1:无人机系统设计技术
    • 14.1 从刻漏到无人机:摘下控制学理论与工程的面具
    • 14.2 无人机导航系统设计
    • 14.3 多旋翼无人机飞行控制技术
    • 14.4 无人机飞行控制律
    • 14.5 无人机信息传输技术
  • 15 扩充知识2:无人机无线控制模块及应用
    • 15.1 2.4G无线通信的介绍
    • 15.2 2.4G无线通信模块的测试
    • 15.3 蓝牙通信的介绍
    • 15.4 蓝牙通信模块的测试
    • 15.5 蓝牙通信模块的应用
    • 15.6 HC-05蓝牙模块的AT指令集
  • 16 扩充知识3:运动机构设计
    • 16.1 电机
    • 16.2 有刷直流电机
    • 16.3 无刷直流电机
    • 16.4 步进直流电机
    • 16.5 伺服舵机
    • 16.6 直流电机驱动电路的控制原理
    • 16.7 L298N驱动电路
    • 16.8 PWM调速原理
    • 16.9 L298N驱动直流减速电机的程序设计
    • 16.10 L298N驱动步进直流电机的程序设计
    • 16.11 机械臂的程序设计
  • 17 扩充知识4:控制模块设计与制作
    • 17.1 微控制器最小系统的设计
    • 17.2 微控制器接口
    • 17.3 电源电路的设计
    • 17.4 电池
    • 17.5 原理图的绘制
    • 17.6 PCB板的设计
    • 17.7 PCB板的制作
  • 18 无人机飞行控制技术课程练习题
    • 18.1 练习一
    • 18.2 练习二
    • 18.3 练习三
    • 18.4 练习四
    • 18.5 练习五
    • 18.6 练习六
    • 18.7 练习七
    • 18.8 练习八
机械臂的程序设计
  • 1 视频
  • 2 测验



机器人舵机

一、 什么是舵机

舵机(英文叫Servo):它由直流电机、减速齿轮组、传感器和控制电路组成的一套自动控制系统。通过发送信号,指定输出轴旋转角度。

二、 舵机的原理及控制

1.模拟舵机及其控制原理

   舵机是一个微型的伺服控制系统,具体的控制原理可以用下图表示。

     工作原理是控制电路接收信号源的控制脉冲,并驱动电机转动。

模拟舵机需要一个外部控制器(遥控器的接收机)产生脉宽调制信号来告诉舵机转动角度,脉冲宽度是舵机控制器所需的编码信息。如图所示,舵机的控制脉冲周期20ms,脉宽从0.5ms-2.5ms,分别对应-90度到+90度的位置。

舵机原来主要用在飞机、汽车、船只模型上,作为方向舵的调节和控制装置。所以,一般的转动范围是45°、60°或者90°,这时候脉冲宽度一般只有1ms-2ms之间。后来舵机开始在机器人上得到大幅度的运用,转动的角度也在根据机器人关节的需要增加到-90度至90度之间,脉冲宽度也随之有了变化。

2.数字舵机及其控制原理

数字舵机从根本上颠覆了舵机的控制系统设计。数字和模拟舵机相比在两个方面有明显的优点。1、防抖。2、响应速度快。

模拟舵机由于使用模拟器件搭建的控制电路,电路的反馈和位置伺服是基于电位器的比例调节方式。电位器由于线性度的影响,精度的影响,个体差异性的问题,会导致控制匹配不了比例电压,比如期望得到2.5V的电压位置,但第一次得到的是2.3V,经过1个调节周期后,电位器转过的位置已经是2.6V了,这样控制电路就会给电机一个方向脉冲调节,电机往回转,又转过头,然后又向前调节,以至于出现不停的震荡,这就是我们所看到的抖舵现象。

模拟舵机的调节周期是20ms,也就是它的反应时间是20ms。根据舵机的不同,假设舵机的速度是0.2s/60°,那么20ms舵机最快的时候转过0.6度才会进行调节,这就是关节在突然出现大负载的情况下,会被扭矩摆动0.6度,然后才纠正回来,直观的感觉就是这个舵机不“硬”。

数字舵机可以以很高的频率进行调节,这个周期和角度会变得非常小,并且有PID调节方式的存在,能够在以很适当的PID参数进行调节,能够让舵机有很高的响应速度,不会出现超调。

3.总线伺服舵机

总线伺服舵机简单的说就是可以串联,并且接受数字信号,能够提供关节的力矩、电流、温度、角度等信息,能准确控制位置的运动单元,外形可以和舵机一模一样。通过一个串口给总线发送一条指令:舵机1,转20度;舵机2转30度,舵机3休息……直到理论上最后一个舵机。然后所有的舵机就会执行这条指令。

三、舵机的结构

舵机的主体结构如下图所示,主要有几个部分:外壳、减速齿轮组、电机、电位器、控制电路。