个人介绍
Numerical Analysis(数值分析)

主讲教师:王正盛

教师团队:共3

  • 王正盛
  • 戴华
  • 杨熙
学校: 南京航空航天大学
开课院系: 理学院数学系
课程英文名称: Numerical Analysis
课程编号: 0810110W
学分: 2
课时: 32
Course Description(课程介绍)
This course is an important basic course for specialty for undergraduate students of non-mathematical majors. This course mainly covers the classical theory and methods of Numerical Analysis, including Solution of Nonlinear Equations, Solution of Systems of Linear Equations, Approximation of Functions, Numerical Integration and Numerical Solution of Ordinary Differential Equations. It requires that students should master the basic discipline of numerical analysis, be able to carry out the classical numerical methods for some mathematical problems and have the basic knowledge and skills to use computers to solve mathematical problems and conduct research by both algorithm-designing and computer programming so that they are prepared with the necessary foundation for their future study and work.
Instructors Team(教师团队)

王正盛

职称:教授

单位:南京航空航天大学

部门:理学院数学系

职位:理学院副院长

戴华

职称:教授

单位:南京航空航天大学

部门:理学院数学系

杨熙

职称:副教授

单位:南京航空航天大学

部门:理学院数学系

Course ​Textbook(课程教材)

Introduction to Numerical Analysis, by Zhengsheng Wang,Science Press

Course Syllabus(课程大纲)

Syllabus

NO. 0810110W

Numerical Analysis

Spring semester 2020

 

Instructor: Prof. Zhengsheng Wang

Email: wangzhengsheng@nuaa.edu.cn  

 

Lecture:  Wednesday 14:00-15:45Friday  10:15-12:00

Online Jiangjun Road CampusD3102

Office HoursOnline & WeChat Group

Tuesday 9:00AM-3:00PMRoom 358Science Building

Credit Hours:32   Credit: 2

Textbook: Introduction to Numerical AnalysisScience Press2018

by Zhengsheng Wang

Language: English

Course webpage: https://mooc1.chaoxing.com/course/206173770.html

 

Prerequisites (Requirements for courses, ability and knowledge in advance):  CalculusLinear AlgebraFundamentals of Computer Programming

 

Grading Policy:

n Final Grade (100) = Presence, Class performance and Homework (30%) + Final Exam (70%)

n Final Examination: Closed-book exam

 

Course Topics and Objectives:

This course is an important basic course for specialty for undergraduate students of non-mathematical majors. This course mainly covers the classical theory and methods of numerical analysis, including Solution of Nonlinear Equations, Solution of Systems of Linear Equations, Approximation of Functions, Numerical Integration and Numerical Solution of Ordinary Differential Equations. It requires that students should master the basic discipline of numerical analysis, be able to carry out the classical numerical methods for some mathematical problems and have the basic knowledge and skills to use computers to solve mathematical problems and conduct research by both algorithm-designing and computer programming so that they are prepared with the necessary foundation for their future study and work.

 

Class Conduct:

All students are expected to be attentive in class. Please make every effort to arrive on time. It is the student’s responsibility to attend class, pay attention, respond to the teacher, and participate in discussions.

 

Contents

This course is divided into six chapters as follows.

Ch1 Introduction (4 hrs)

1.1 Numerical Analysis: What and Why

1.2 Review of Calculus

1.3 Computer Arithmetic and Error Analysis

1.4 Algorithms and Convergence

1.5 An introduction to MATLAB

Ch2 Solution of Nonlinear Equations (6 hrs)

2.1 Introduction; Bisection method

2.2 Fixed point iteration

2.3 Newton's method

2.4 Secant method

Ch3 Solution of Systems of Linear Equations (10 hrs)

3.1 Introduction; Gaussian Elimination

3.2 LU factorization

3.3 Vector and matrix norms

3.4 Jacobi iterative method

3.5 Gauss-Seidel iterative method

Ch4 Approximation of functionInterpolation (4 hrs)

4.1 Introduction; Lagrange form

4.2 Newton's divided difference formula

Ch5 Numerical Integration (4 hrs)

5.1 Introduction; Numerical ...n based on interpolation

5.2 Trapezoid rule, Simpson’...Composite Trapezoid rule

5.3 Romberg Integration

Ch6 Solution of Ordinary Differential Equations (4 hrs)

6.1 Introduction; Euler's method

6.2 Taylor methods

6.3 Runge-Kutta methods

 

MATLAB

n MATLAB Demo

n MATLAB Programming

n Numerical Methods with MATLAB

课程评价

教学资源
课程章节 | 文件类型   | 修改时间 | 大小 | 备注
1.1 Course Videos
视频
.mp4
2020-04-25 28.78MB
 
视频
.mp4
2020-04-25 36.05MB
 
视频
.mp4
2020-04-25 65.73MB
1.3 Lecture Notes
文档
.pdf
2020-04-25 6.85MB
2.1 Learning Objectives
附件
.${file.extension}
2020-04-25 --
2.2 Course Videos
视频
.mp4
2020-05-11 51.82MB
 
视频
.mp4
2020-05-11 28.71MB
 
视频
.mp4
2020-05-11 131.98MB
 
视频
.mp4
2020-05-11 66.30MB
2.3 Lecture Notes
文档
.pdf
2020-04-25 4.30MB
3.1 Learning Objectives
附件
.${file.extension}
2020-05-06 --
3.2 Course Videos-Gauss-LU
视频
.mp4
2020-05-06 37.86MB
 
视频
.mp4
2020-05-06 68.81MB
3.3 Course Video-Norms-Iterative
视频
.mp4
2020-05-09 40.40MB
3.4 Course Videa-Jacobi Iterative Method
视频
.mp4
2020-05-09 62.66MB
3.5 Course Video-G-S Iterative Method
视频
.mp4
2020-05-09 44.80MB
3.6 Lecture Notes
文档
.pdf
2020-05-18 1.78MB
4.1 Learning Objectives
附件
.${file.extension}
2020-05-18 --
4.2 Introduction-Video
视频
.mp4
2020-05-18 61.47MB
4.3 Lagrange Interpolation Polynomial-Video
视频
.mp4
2020-05-18 38.95MB
4.4 Newton's Divided Difference Polynomial-Video
视频
.mp4
2020-05-18 58.52MB
4.5 Lecture Notes
文档
.pdf
2020-05-21 1.10MB
5.1 Learning Objectives
附件
.${file.extension}
2020-05-21 --
5.2 Introduction; Numerical integration based on interpolation
视频
.mp4
2020-05-21 37.90MB
5.3 Trapezoid rule Simpson’s rule
视频
.mp4
2020-05-21 32.17MB
5.4 Composite Rule
视频
.mp4
2020-05-21 48.00MB
5.5 Lecture Notes
文档
.pdf
2020-05-21 801.87KB
6.1 Learning Objectives
附件
.${file.extension}
2020-05-21 --
6.2 Introduction
视频
.mp4
2020-05-21 47.12MB
6.3 Euler-Taylor-RK
视频
.mp4
2020-05-21 56.10MB
6.4 Lecture Notes
文档
.pdf
2020-05-21 1.13MB
7.1 Learning Objectives
附件
.${file.extension}
2020-05-21 --
7.2 Lecture Notes
文档
.pdf
2020-05-21 1.57MB
提示框
提示框
确定要报名此课程吗?
确定取消

京ICP备10040544号-2

京公网安备 11010802021885号