Zhai Feng
  • 单位:Zhejiang Normal University   Department of Physics
  • 职称:Professor
  • 职位:
  • 出生:1976-09
  • 性别:男
  • 社会职务:
  • 联系方式:fzhai@zjnu.cn; 13646792950 (652950)
  • 微博:

Research Field:

Condensed Matter Physics

Publication:

[53] Feng Zhai and Junqiang Lu. General relation between the group delay and dwell time in multicomponent electron systems.
 Phys. Rev. B 94, 005400 (2016).


[52] Ya Zhang, Feng Zhai, and Lin Yi. Study of spin-polarized plasma driven by spin force in a two-dimenisonal quantum electron gas.
 Phys. Lett. A 380, 3908 (2016).


[51] Hai Hu, Xiaoxia Yang, Feng Zhai, Debo Hu, Ruina Liu, Kaihui Liu, Zhipei Sun, and Qing Dai. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nature Communications 7, 12334 (2016).


[50] Xiaoxia Yang, Feng Zhai, Hai Hu, Debo Hu, Ruina Liu, Shunping Zhang, Mengtao Sun, Zhipei Sun, Jianing Chen, and Qing Dai. Far-Field Spectroscopy and Near-Field Optical Imaging of Coupled Plasmon–Phonon Polaritons in 2D van der Waals Heterostructures. Adv. Mater. 28, 2931 (2016).


       [49] F. Zhai, X. P. Jin, J. Pastrana, and J. Q. Lu. Magnetic switching and
       spin filtering in an edge-state device based on HgTe waveguides.
       Eur. Phys. J. B 89, 59 (2016).


[48] R. Zhang, X. Y. Zhou, D. Zhang, W. K. Lou, F. Zhai, and K. Chang. Electronic and magneto-optical properties of monolayer phosphorene quantum dots.2D Mater. 2, 045012 (2015).


[47] X. Y. Zhou, W. K. Lou, F. Zhai, and K. Chang. Anomalous magneto-optical response of black phosphorus thin films.
Phys. Rev. B 92, 165405 (2015).


[46] H. Hu, F. Zhai, D. B. Hu, Z. J. Li, B. Bai, X. X. Yang, and Q. Dai. Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage. Nanoscale 7, 19493 (2015).


[45] X. Y. Zhou, R. Zhang, J. P. Sun, Y. L. Zou, D. Zhang, W. K. Lou, F. Cheng, G. H. Zhou, F. Zhai, and Kai Chang. Landau levels and magnetotransport property of monolayer phosphorene.
Scientific Reports 5, 12295 (2015).


[44] F. Zhai and J. Wang. Shot noise in systems with semi-Dirac points.
 J. Appl. Phys. 103, 183111 (2014).


[43] Y. Song, F. Zhai, and Y. Guo. Generation of a fully valley-polarized current in bulk graphene. Appl. Phys. Lett. 103, 183111 (2013).


[42] D. Valencia, J.-Q. Lu, J. Wu, F. Liu, F. Zhai, and Y.-J. Jiang. Electronic transmission in Graphene suppressed by interlayer interference.AIP Advances 3, 102125 (2013).

   [41] F. Zhai. Valley filtering in gapped graphene modulated by an
  antisymmetric magnetic field and an electric barrier.Nanoscale 4, 6527 (2012).

[40] F. Zhai and K. Chang. Valley filtering in graphene with a Dirac gap. Phys. Rev. B 85, 155415 (2012).

[39] Y.-T. Zhang, F. Zhai, Z. H. Qiao, and Q. F. Sun. Spin-polarized edge modes and snake states in HgTe-CdTe quantum wells under an antisymmetric magnetic field. Phys. Rev. B 86, 121403(R) (2012).

[38] C. Li and F. Zhai. Magnetoplasmon spectrum of two-dimensional helical metals. New J. Phys. 14, 013047 (2012).

[37] Y. T. Zhang and F. Zhai. Strain enhanced spin polarization in graphene with Rashba spin-orbit coupling and exchange effects. J. Appl. Phys. 111, 033705 (2012).

[36] Z. H. Wu, F. Zhai, F. M. Peeters, H. Q. Xu, and K. Chang. Valley-dependent Brewster angles and Goos-Hanchen effect in strained graphene. Phys. Rev. Lett. 106, 176802 (2011).

[35] F. Zhai and P. Y. Mu. Tunneling transport of electrons on the surface of a topological insulator attached with a spiral multiferroic oxide.  Appl. Phys. Lett. 98, 022107 (2011).

[34] F. Zhai and L. Yang. Strain-tunable spin transport in ferromagnetic graphene junctions. Appl. Phys. Lett. 98, 062101 (2011).

[33] F. Zhai, Y. L. Ma, and K. Chang.Valley beam splitter based on strained graphene. New J. Phys. 13, 083029 (2011).

[32] F. Zhai, P. Y. Mu, and K. Chang. Energy spectrum of Dirac electrons on the surface of a topological insulator modulated by a spiral magnetization superlattice. Phys. Rev. B 83, 195402 (2011).

[31] F. Zhai, Y. L. Ma, and Y.-T. Zhang. Valley-filtering switch based on strained graphene. J. Phys.: Condens. Matter. 23, 385302 (2011).

[30] Y. J. Jiang, F. Lu, F. Zhai, T. Low, and J. P. Hu. Connectivity of edge and surface states in topological insulators. Phys. Rev. B 84, 205324 (2011).

[29] L. B. Zhang, F. Cheng, F. Zhai, and K. Chang. Electrical switching of the edge channel transport in HgTe quantum wells with an inverted band structure. Phys. Rev. B 83, 081402(R) (2011).

[28] C. Li and F. Zhai. Crystallographic plane tuning of magnetoplasmon excitations in two-dimensional electron gas systems. J. Phys.: Condens. Matter. 23, 305802 (2011).

[27] C. Li and F. Zhai. Anisotropic magnetoplasmon spectrum of two-dimensional electron gas systems with the Rashba and Dresselhaus spin-orbit interactions. J. Appl. Phys. 109, 093306 (2011).

[26] F. Zhai, X. F. Zhao, K. Chang, and H. Q. Xu. Magnetic barrier on strained graphene: A possible valley filter. Phys. Rev. B 82, 115442(2010).

[25] Y. Zhang and F. Zhai. Tunneling magnetoresistance on the surface of a topological insulator with periodic magnetic modulations.
 Appl. Phys. Lett. 96, 172109(2010).

[24] L. B. Zhang, F. Zhai, and K. Chang. Electron tunneling through a planar single barrier in HgTe quantum wells with inverted band structures. Phys. Rev. B 81, 235323 (2010).

[23] Y.-T. Zhang, Q.-M. Li, Y.-C. Li, Y.-Y. Zhang, and F. Zhai. Band structures and transport properties of zigzag graphene nanoribbons with antidot arrays. J. Phys.: Condens. Matter 22,315304 (2010).

[22] F. Zhai, X. F. Zhao, and H. Q. Xu. Rectification of spin-bias-induced charge currents. Appl. Phys. Lett. 94,262103 (2009).

[21] Y. Zhang and F. Zhai. Effect of an in-plane magnetic field on the spin transport through a Rashba superlattice. Phys. Rev. B 79, 085311(2009).

[20] C. H. Bi and F. Zhai. Reexamination of spin transport through a double-delta magnetic barrier with spin-orbit interactions.  Mod. Phys. Lett. B 23, 3631 (2009).

[19] F. Zhai and K. Chang. Theory of huge tunneling magnetoresistance in graphene. Phys. Rev. B 77,113409 (2008).

[18] F. Zhai, K. Chang, and H. Q. Xu. Spin current diode based on an electron waveguide with spin-orbit interaction. Appl. Phys. Lett. 92,102111(2008).

[17] F. Zhai and H. Q. Xu. Spin filtering and spin accumulation in an electron stub waveguide with spin-orbit interaction. Phys. Rev. B 76, 035306 (2007).

[16] F. Zhai and H. Q. Xu. Electric control of spin polarization orientation in a magnetic-electric barrier structure. Phys. Lett. A 369,498 (2007).

[15] F. Zhai and H. Q. Xu. Spin filtering in single magnetic barrier structures revisisted. Appl. Phys. Lett. 88, 032502 (2006).

[14] L. B. Zhang, F. Zhai, and H. Q. Xu. Scattering matrix method for multimode electron transport through quantum wires under a local magnetic field modulation and spin-orbit interaction. Phys. Rev. B 74, 195332 (2006).

[13] F. Zhai and H. Q. Xu. Symmetry of spin transport in two-terminal waveguides with a spin-orbital interaction and magnetic field modulations. Phys. Rev. Lett. 94, 246601 (2005).

[12] F. Zhai and H. Q. Xu. Generation of spin polarization in two-terminal electron waveguides by spin-orbit interaction and magnetic field modulations. Phys. Rev. B 72, 085314 (2005).

[11] F. Zhai and H. Q. Xu. Transport through single-channel atomic wires: effects of connected sites on scattering phase and odd-even parity oscillations. Phys. Rev. B 72, 195346 (2005).

[10] F. Zhai, H. Q. Xu, and Y. Guo. Tunable spin polarization in a two-dimensional electron gas modulated by a ferromagnetic metal stripe and a Schottky metal stripe. Phys. Rev. B 70, 085308 (2004).

[09] Y. Guo, J. H. Qin, F. Zhai, X. Y. Chen, and B. L. Gu. Wave-vector filtering and spin filtering in a magnetic double-barrier and double-well structure. Phys. Lett. A 322, 117 (2004).

[08] F. Zhai, Y. Guo, and B. L. Gu. Giant magnetoresistance effect in a magnetic-electric barrier structure. Phys. Rev. B 66, 125305 (2002).

[07] F. Zhai, Y. Guo, and B. L. Gu. Current and spin-filtering dual diodes based on diluted magnetic semiconductor heterostructures with a nonmagnetic barrier. J. Appl. Phys. 94, 5432 (2003).

[06] F. Zhai, Y. Guo, and B. L. Gu. Tunneling time in magnetic barrier structures. Eur. Phys. J. B 29, 147 (2002).

[05] Y. Guo, F. Zhai, B. L. Gu, and Y. Kawazoe. Resonant enhancement and negative differential resistances in hybrid magnetic-electric barrier structures. Phys. Rev. B 66, 045312 (2002).

[04] Y. Guo, X.Y. Chen, F. Zhai, B. L. Gu, and Y. Kawazoe. Spin-filter diode based on ZnSe/Zn1-xMnxSe/Zn1-yMnySe/ZnSe heterostructures. Appl. Phys. Lett. 80, 4591 (2002).

[03] J. Q. Lu, Y. Guo, F. Zhai, B. L. Gu, J. Z. Yu, and Y. Kawazoe. Spin-polarized transport through a magnetic heterostructure: tunneling and spin filtering effect. Phys. Lett. A 299, 616 (2002). 

[02] F. Zhai, Y. Guo, and B. L. Gu. Coupling effects of layers on spin transport in ZnSe/Zn1-xMnxSe heterostructures. Eur. Phys. J. B 23, 405 (2001).

[01] F. Zhai, Y. Guo, and B. L. Gu. Effects of conduction band offset on spin-polarized transport through a semimagnetic semiconductor heterostructure. J. Appl. Phys. 90, 1328 (2001).


Education and work experience

Sep. 1998 - Jun. 2003: PhD, Condensed Matter Physics

Center for Advanced Study, Tsinghua University, China


Sep. 2003 - Aug. 2005: Postdoctoral Research Fellow

Division of Solid State Physics, Lund University, Sweden


Sep. 2005 – Nov. 2010: Associate Professor

School of Physics and Optoelectronic Technology,

Dalian University of Technology, China


Dec. 2010 – Present: Associate Professor, Professor

Department of Physics, Zhejiang Normal University, China