1
自然哲学的数学原理
1.11.3.23 命题XXII 定理XVIII
命题XXII 定理XVIII

月球的所有运动,以及所有那些运动的不等性(inœquatitas)遵循已确立的原理。

较大的行星,在它们围绕太阳转动期间,可能携带其他较小的行星围绕它们运行,且那些较小的行星,由第一卷命题LXV,显然它们应在焦点在较大的行星的中心的椭圆上运行。此外,它们的运动以多种方式被太阳的作用摄动,且它们受到在我们的月球上观测到的不等性的影响。无论如何,它[月球](由第一卷命题LXVL系理2,3,4和5)运动得较迅速,且向地球所引的半径画出的面积比按照时间的要大,又有弯曲较小的一条轨道,且所以它在朔望比在方照更靠近地球,这些作用被偏心运动的阻碍除外。因为(由命题LXVI系理9)当月球的远地点在朔望时,偏心率为最大;且当它在方照出现时,偏心率为最小;且因此月球当近地点在朔望比在方照时较迅速且更靠近我们,而当远地点在朔望比在方照时更迟缓且更远离我们。此外,远地点前行,且交点退行,而运动是不均匀的。且由于(由命题LXVI系理7和8)远地点在其朔望前行更迅速,且在方照的退行更迟缓,它由前行对退行的超出每年被携带前行。但交点(由命题LXVI系理2)在其朔望静止且在方照最迅速地退行。但月球的最大的纬度,在其方照(由命题LXVI系理10)比在其朔望大,且月球的平均运动在地球的近日点(由命题LXVI系理6)比在其远日点缓慢。这些是被天文学家记录下来的显著的不等性。

也有其他一些不等性没有被以前的天文学家观测到,由于它们月球的运动被如此摄动,以致至今这些运动未能由定律归结为某一法则。因为月球的远地点的和交点的速度或者小时运动,且它们的均差(æquatio),以及在朔望的最大的偏心率和在方照的最小的偏心率之间的差,和被称为变差(variatio)的不等性,每年的增大和减小(由命题LXVI系理14)按照太阳的视直径的三次比。且此外,变差的增大或者减小很近似地按照(由第一卷引理X系理1和2,以及命题LXVI系理16)方照之间时间的二次比,但在天文学计算上这一不等性通常归入月球的中心差(prosthaphæresin),并与它相结合。