1
自然哲学的数学原理
1.11.3.8 命题VIII 定理VIII
命题VIII 定理VIII

如果两个球互相有重力作用,它们的物质在离球的中心距离相等的区域上到处是同一的:则任一球相对于另一球的重量与它们中心之间的距离的平方成反比。

在我发现向着整个行星的重力起源于且由向着部分的重力组成,以及向着每一部分的重力与离开部分的距离的平方成反比之后,我仍怀疑二次反比在由一些力合成的总力中是能准确地得到,或是只是近似地如此。因为在大的距离上充分精确地得到的比,在靠近行星的表面,由于小部分的距离的不相等及位置的不相似而显著地偏离此比是可能发生的。然而由第一卷命题LXXV和LXXVI及其推论,我终于弄清了这里所叙述的命题的正确性。

系理1 因此,能发现并相互比较物体向着不同行星的重量。因为相等的物体在圆上围绕行星运行时的重量(由第I卷命题IV系理2)与圆的直径成正比且与循环时间的平方成反比;又在行星的表面或者离中心任意距离处的重量,(由这个命题)按照距离的二次反比或者更大或者较小。于是,由金星环绕太阳的循环时间224天又 小时,最外面的环木卫星环绕木星的16天又 小时,惠更斯卫星(47)(satelles Hugenianus)环绕土星的15天又 小时,以及月球环绕地球的27天7小时43分钟,与金星离太阳的平均距离,和最外面的环木卫星离木星的中心的最大的日心距角8′.16″,惠更斯卫星离土星的中心的3′.4″,以及月球离地球中心的10′.33″比较,通过计算我发现,相等的物体且离太阳的、木星的、土星的和地球的中心距离相等,它们向着太阳的、木星的、土星的和地球的重量分别如同1, ,且距离增大或者减小,重量按照距离的二次比减小或者增大:物体在离太阳的、木星的、土星的和地球的中心的距离分别为10000、997、791和109时,向着他们的重量相等,且因此在它们的表面的重量分别如同10000、943、529和435。物体在月球的表面上重量如何,在后面说明。

系理2 在每个行星中的物质的量亦可以知道。因为在行星中的物质的量如同在离它们的中心距离相等处它们的力,亦即,在太阳、木星、土星和地球中的物质的量分别如同1, (48)。如果太阳的视差取作大于或者小于10″.30′″,在地球中的物质的量应按照三次比增大或者减小。

系理3 诸行星的密度亦可知道。因为由第I卷命题LXXII,相等且同质的(homogeneorum)物体向着同质的球的重量在球的表面如同球的直径,且因此异质(heterogeneorum)球的密度如同那些重量除以球的直径。但是太阳的、木星的、土星的和地球的真实直径彼此分别如同10000、997、791和109,且向着它们的重量分别如同10000、943、529和435。且所以密度如同100、 、67和400。由这一计算发现的地球密度,不依赖太阳的视差,而是由月球的视差确定的,且所以在这里被正确地定出。所以,太阳比木星略为致密,且木星比土星致密,而地球比太阳致密四倍。因为由于自身的高温太阳变得稀薄。月球比地球致密,在后面这是显然的。

系理4 所以,在其他情况相同时,愈小的行星愈致密。因为这样重力在他们的表面接近相等。但在其他情况相同时,行星愈靠近太阳愈致密;正如木星较土星致密,且地球较木星致密。无疑行星被安放在离太阳不同的距离上,使得按照其密度而或多或少地享有太阳的热。如果地球位于土星的轨道上,我们的水将会冻结,如果在水星的轨道上,水以蒸气逃逸。因为太阳的光,热与它成比例,在水星的轨道上比在我们跟前稠密七倍;且我用一支温度计发现,在夏天太阳热度的七倍之下水沸腾。毫无疑义,水星上的物质与其热相适应,且所以比我们地球上的这种物质致密;因为所有更致密的物质,为了大自然的造化之功(operatio),需要较多的热。