1
自然哲学的数学原理
1.10.8.1 命题XLI 定理XXXII
命题XLI 定理XXXII

压力不能通过流体沿直线传播,除非流体的小部分位于一条直线上。

如果小部分a,b,c,d,e位于一条直线上,的确压力能直接地从a传播到e;但小部分e将倾斜地推动倾斜放置的小部分f和g,且那些小部分f和g不能承受带给它们的压力,除非受到较远的小部分h和k的支持;但那些支持它们的小部分也受到它们的压迫,且这些小部分不能承受压力,除非它们受到更远的小部分l和m的支持并压迫它们,且如此以至无穷。所以,当压力传播到不位于一条直线上的小部分,它将开始分散并倾斜地传播以至无穷;所以,当压力被传播到不位于一条直线上的小部分时,它分裂并倾斜地传播以至无穷,且在开始倾斜传播之后,如果它碰到更远处的小部分,它们不位于一条直线上,它再次分裂;且分裂的次数与遇到小部分不恰好在一条直线上的次数一样多。此即所证

系理 如果从一给定点通过流体传播的压力的某部分被一障碍阻断,其余部分,它没有被阻断,将在障碍后面的空间分散开。这亦能按如下方式被证明。设压力由点A向任意方向传播,且如果可能,就沿直线,又障碍NBCK在BC被穿一孔,所有的压力被阻断,除了锥形部分APQ,它穿过圆孔BC。设圆锥APQ被横截平面de,fg,hi分为锥截形;则当圆锥ABC传播压力时,推动较远的锥截形degf的表面de,且这个锥截形推动邻近的锥截形fgih的表面fg,且那个锥截形推动第三个锥截形,且如此下去以至无穷;显然(由运动的第三定律)第一个锥截形defg,由于第二个锥截形fghi的反作用,其表面fg受到的推动和压迫与它推动和压迫第二个锥截形的一样大。所以圆锥Ade和锥截形fhig之间的锥截形degf在两边受到压迫,且因此(由命题XIX系理6(41))其图形不能被保持,除非各个方向上受相同力的压迫。所以,相同的推动,由它表面de,fg受到压迫,流体努力向边df,eg退离,且在此处(由于不是刚体,而完全彻底地是流体)涌出并扩大,除非有环绕的流体抑制这一努力。所以,由于努力涌出,它在边df和eg压迫环绕的流体;且所以压力自边df进入空间NO且由另一边eg进入空间KL的传播,不小于它从表面fg向PQ的传播。此即所证