1
自然哲学的数学原理
1.10.7.1 命题XXXII 定理XXVI
命题XXXII 定理XXVI

如果两个相似的物体系统由数目相等的小部分构成,且对应的小部分相似且成比例,在一个系统中的每一个对在另一个系统中的每一个,处于彼此相似的位置,且具有密度相互间的给定之比,且它们彼此在成比例的时间开始相似的运动(在一个系统中的小部分彼此之间且在另一个系统中的小部分彼此之间),如果在同一个系统中小部分相互不接触,除非在反射的瞬间;亦不相互吸引或者排斥,除非加速力与对应的小部分的直径成反比且与速度的平方成正比:我说,那些系统的小部分在成比例的时间彼此继续相似的运动。

我说,相似且处于相似位置的物体在成比例的时间彼此的运动相似,当那些时间结束时,它们相互之间总在相似的位置:假如一个系统的小部分与另一个系统对应的小部分相比较。因此时间成比例,在此期间由对应的小部分画出相似图形的相似且成比例的部分。所以如果存在此类的两个系统,它们对应的小部分,由于在运动开始时的相似性,将继续相似的运动,直到它们彼此相遇。因为如果没有力的作用,由运动的定律I,它们将在直线上均匀地前进。如果它们由某一个力相互作用,且那些力与对应的小部分的直径成反比,且与速度的平方成正比,因为小部分的位置相似且力成比例,总的力,由它对应的小部分受到作用,由每个作用力(按照诸定律的系理2)合成,有相似的指向,一如它们趋向位于小部分中的相似的中心,且那些总力彼此如同每个分量,这就是,与对应的小部分的直径成反比,且与速度的平方成正比;所以使对应的小部分继续画出相似的图形。只要那些中心静止(由第I卷命题IV系理1和系理8)事情将会如此。但如果它们运动,因为移动的相似性,它们的位置在系统的小部分之间保持相似;在小部分画出的图形中引入相似的变化,所以,对应且相似的小部分的运动相似直到它们初次相撞,且所以相撞相似,反射相似。然后(由已证明的)小部分之间彼此的运动相似直到它们再次相撞,且如此继续,以至无穷。此即所证

系理1 因此,如果任意两个物体,它们相似且相对于系统的对应的小部分处于相似的位置,在成比例的时间它们开始相似的运动,且如果它们的大小和密度彼此如同对应的小部分的大小和密度:这些物体在成比例的时间继续相似的运动。因为对两个系统中较大的部分与对小部分,情况是一样的。

系理2 如果两个系统中所有相似且位于相似位置的部分彼此静止,且它们中的两个,它们大于其余的,且在两个系统中相互对应,沿位置相似的线开始无论何种相似的运动,它们引起系统的其余部分的相似的运动,而且其余部分之间在成比例的时间继续相似的运动;且因此画出的空间与它们的直径成比例。