1
自然哲学的数学原理
1.10.6.8 命题XXXI 定理XXV
命题XXXI 定理XXV

如果振动物体的阻力在每一画出的成比例的弧的部分按给定的比增大或者减小;则在下降所画的弧和随后上升所画的弧之间的差,按相同的比被增大或者减小。

因为那个差由于介质的阻力来源于摆的迟滞,且因此如同总的迟滞以及与它成比例的迟滞阻力。在上一命题中直线 aB和那些弧CB,Ca的差Aa之下的矩形等于面积BKTa。且那个面积,如果保持长度 aB,它按横标线DK之比增大或者减小;这就是,按照阻力之比,且因此如同长度aB和阻力的联合。所以Aa和 aB之下的矩形,如同aB和阻力的联合,且因此Aa如同阻力。此即所证

系理1 因此,如果阻力如同速度,在同一介质中的弧之差如同画出的整个弧;且反之亦然。

系理2 如果阻力按照速度的二次比,那个差按照整个弧的二次比;且反之亦然。

系理3 且一般地,如果阻力按照速度的三次或任意其他比,差按照整个弧的相同的比;且反之亦然。

系理4 且如果阻力部分地按照速度的简单比,部分地按照速度的二次比,差部分地按照整个弧的比且部分地按照它的二次比;且反之亦然。对速度的阻力的定律和比,与那个差对弧的长度的定律和比相同。

系理5 且因此,如果摆相继画出不等的弧,能对所画出的弧发现这个差的增量或者减量的比;亦有对较大或较小阻力的增量或者减量的比。

总释

由这些命题,通过在任意介质中的振动摆,我们能发现介质的阻力。事实上,我曾由如下实验探究空气的阻力。一只木球重 罗马盎司,直径为 伦敦(36),被我用细线悬挂在一个很牢固的钩上,使得钩和球的振动中心之间的距离为 呎。在线上距离悬挂中心10呎又1吋处,我标记一点;且对着那个点我放置一把按吋划分的尺子,借助于它我能标记由摆画出的弧的长度。然后我对振动计数,在此期间球失去其运动的八分之一。如果摆被引至离垂线二吋的距离,并由此使它落下,于是在其整个下落中画出二吋的弧,且第一次全振动,由下落及随后上升构成,画出约四吋的弧,然后它经164次振动失去其八分之一的运动,以致其最后一次上升画出一又四分之三吋的弧。如果初次下降画出四吋的弧,它经121次振动失去其八分之一的运动,以致其最后的上升画出了 吋的弧。如果初次上升画出八吋,十六吋,三十二吋或六十四吋的弧,它分别经69, 次振动失去其八分之一的运动。所以初次下降和最后一次上升画出的弧的差,在第一,第二,第三,第四,第五和第六种情形分别为 ,1,2,4,8吋。在每一种情形这些差除以振动数,则在一次平均振动中,在此期间[球]画出 ,15,30,60,120吋的弧,下降和随后上升的弧的差分别为 吋。但这些差在较大的振动中近似地按照所画弧的二次比,在较小的振动中按照较那个比略大的比;且所以(由本卷命题XXXI系理2)球的阻力,当运动较为迅速时,很近似地按照速度的二次比;当较为迟缓时,按照略大于那个比的比。

最后,因为有些人的看法是存在一种特定的以太介质,它极为细微,能很自由地渗透到所有物体的细孔和通道,这种介质通过物体的细孔流动应产生一种阻力;为检验是否我们在运动物体上所经验的阻力全在它们的外表面,或者内部部分是否遇到作用于其表面的显著阻力,我设计了如下实验。我用一根十一呎长的线把一个圆枞木小盒通过一个钢环悬挂在一只很牢固的钢钩上,在钩上向上有一锋利的凹口,使靠在凹口上的环的靠上的弧能更自由地运动。线系在环的靠下的弧上。我拉它离开垂线至约六呎的距离,并沿垂直于钩上凹口的平面,使摆振动时,环不在钩的凹口上前后滑动。因为悬挂点,环在此接触钩,应保持静止。我精确地标出摆被拉到的位置,并放下摆,标记另外三个位置,摆经第一次,第二次和第三次振动后返回到此处。我曾相当频繁地重复;使得我尽可能精确地发现那些位置。然后我在小盒中装入铅和其他在手边的更重的金属。但首先我称出空盒连同绕在盒上的细线的部分以及其余延伸于钩和悬挂的小盒之间的线的一半的重量。因为拉直的线当摆拉离垂线,它总以其一半的重量作用于摆上。在这个重量上我加上小盒容纳的空气的重量。且总重量约为盒中填满金属时重量的七十九分之一。然后,由于当盒子填满金属时,线被其重量拉伸,增加了摆的长度,我缩短线使目前振动的摆与以前的长度相同。然后,再拉摆至第一个标记的位置并放下,我数了约七十七次振动,直到小盒返回到第二个标记的位置,之后同样多的次数,直到小盒返回到第三个标记的位置,且又经过同样多的次数直到小盒返回到第四个位置。由此我得出结论,填满盒子的整个阻力比空盒的阻力所具有的比不大于78比77。因为如果两者的阻力相等,填满的小盒子,由于其固有的力是空盒的七十八倍,应该保持其振动运动如此长久,使得完成78次振动总返回到那些地方。但它在完成77次振动返回到同样的地方。

所以,设A表示在小盒外表面的阻力,且B表示在空小盒内部的阻力;如果等速物体在内部的阻力如同物质,或者被阻碍的小部分的数目,78B是填满的小盒在其内部的阻力,且因此空小盒的总阻力A+B比填满的小盒的总阻力A+78B如同77比78,且由分比,A+B比77B如同77比1,且由此A+B比B如同77×77比1,又由分比A比B如同5928比1。所以空小盒在其内部的阻力小于在其外表面的阻力超过五千倍。这个论证依赖假设填满的小盒的阻力较大不是来源于其他原因,而只来源于某种流体对被包围的金属的作用。

我对这个实验的叙述出于记忆。因为一张纸,在它上面我曾写下描述,丢失了。因此我被迫略去了从记忆中被遗忘的某些分数。

而且我没有时间一一重试。第一次,由于我用的钩不牢固,填满的盒子被迟滞得更快。在寻找原因时,我发现钩如此不牢固以致不能承担小盒的重量,且向这个方向或者那个方向弯曲以服从摆的振动。所以,我得到一牢固的钩,使悬挂点保持不动,且此后得到的一切如以上所描述的。