1
自然哲学的数学原理
1.9.11.9 命题LXV 定理XXV
命题LXV 定理XXV

诸物体,它们的力按照物体离它们的中心的距离的二次比减小,能彼此在椭圆上运动;且往焦点引半径所画出的面积很接近地与时间成比例。

在上面的命题中证明了多个运动精确地在椭圆上进行的情形。力的定律与那里所假设的定律退离得愈远,物体对它们相互运动的摄动愈大;物体按照这里假设的定律相互牵引,它们不可能精确地在椭圆上运动,除非彼此之间的距离保持确定的比例。但是在如下的情形,[物体运动的轨道]与椭圆相差不大。

情形1 假设几个较小的物体围绕某个非常大的物体在离它的不同的距离上运行,且趋向每个物体的绝对力与同一物体成比例。又因为重力的公共的中心(由诸定律的系理四)或者静止或者均匀地一直向前运动,我们设想较小的物体是如此之小,使得非常大的物体绝不显著地偏离这个中心:则那个非常大的物体或者静止,或者均匀地一直向前运动而没有可感觉到的误差;较小的物体围绕非常大的物体在椭圆上运行,且向较小的物体所引半径画出的面积与时间成比例;除了或者由非常大的物体离开那个重力的公共的中心引入的误差,或者由较小的物体彼此的相互作用引入的误差。然而,较小的物体能减小到这种程度,使[离开中心的]那个误差和相互作用小于任意的给定值,且因此轨道与椭圆相合,又面积与时间的对应没有不能小于任意给定值的误差。此即所示。

情形2 现在我们设想按刚才描述过的方式较小的物体围绕一个非常大的物体运行的系统,或者其他任意两个物体相互围绕运行的系统一直均匀地前进,且此时侧面受到处于遥远距离的一个巨大物体的驱动。因为等加速力,由于它们物体沿平行线被驱动,不改变物体的相互位置,但引起整个系统的同时迁移,此时部分之间的相互运动被保持;显然,来自巨大物体的吸引绝不引起被吸引物体之间运动的改变,除非或者由于加速的不相等,或者由于吸引所沿的直线彼此的倾斜角不相等。所以,假设所有趋向巨大物体的加速吸引彼此之间与距离的平方成反比;又增大巨大物体的距离直到由它向其他物体所引的直线的差相对于它们的长度,以及这些直线之间的倾斜角,小于任何已给的量,系统中的部分相互之间的运动将继续,而没有不能小于任意给定的误差。又因为,由于那些部分彼此之间的短距离,整个系统如同一个物体被牵引;因此同一个系统由于这个吸引的运动如同它是一个物体那样;这就是,它的重力的中心围绕巨大的物体画出某一圆锥截线(就是弱吸引时的双曲线或者抛物线,强吸引时的椭圆),且向巨大物体所引半径画出的面积与时间成比例,除了由部分间的距离产生的甚小且能随意减小的误差之外,全然没有误差。此即所示。

由类似的论证可继续至更复杂的情形以至无穷。

系理1 在情形2中,所有物体中最大的物体离两个或者多个[物体]的系统愈近,系统中部分间的相互运动被摄动得愈甚;因为从最大物体到这些部分所引直线相互间的倾斜已彼此变大,比例的不等性亦变大。

系理2 但最大的摄动,以假设系统中的部分向着所有物体中最大的物体的加速吸引彼此之比不与离那个最大的物体的距离的平方成反比为前提;尤其是如果这个比例的不等性大于物体离最大的物体的距离的比例的不等性时。因为如果加速力,它们相等且沿平行线作用,丝毫不摄动[系统中的部分]彼此之间的运动,摄动必然起源于作用的不等性,当不等性较大或者较小时,摄动较大或者较小。作用于某些物体而不作用于另一些物体的较大的推动的超出,必然改变它们彼此之间的位置。且这一摄动加到起源于直线的倾斜和不等性的摄动上时,使整个摄动更大。

系理3 因此,如果这个系统中的部分在椭圆上,或者在圆上运动而没有显著的摄动;显然,如果它们受趋向其他物体的加速力的推动,[对这些部分]或者除了很小的推动之外就没有推动,或者推动相等并沿几乎平行的直线。