1
巧用数学方法
1.2.4 第四节 重视学思想方法和语言的学习

第四节 重视学思想方法和语言的学习

一、数学思想和方法的学习

数学思想是数学知识的结晶,是高度概括的数学理论。数学方法是数学思想在数学活动中的反映和体现,它贯穿于知识的汲取、储存、加工、运用的全过程。它可以使“死”知识复活,相对增加知识的智力价值。在数学学习活动中,认识问题和解决问题,都是知识和方法相互作用的结果。例如,解析几何中把几何问题化为代数问题来研究,就是应用形数对应的思想和化归思想,将曲线上的点的特征性质用与之等价的代数条件表示出来。由此可见,数学思想与数学方法的学习在数学中占有重要的地位,必须把它们学好。

在高中数学中经常接触到的重要数学思想有;字母代数的思想、变换与化归的思想,对应与函数的思想、分类的思想、分解与组合的思想、集合与映射的思想、公理化的思想等。数学方法有:分解法、扩充法、类比、命题转换法、特殊化法、联想法等思考方法;归纳法、演绎法、分析法、综合法、反证法、同一法等证题通法;配方法、换元法、待定系数法、代入法、消元法、比较系数法、判别式法、解析法、参数法、复数法、形数结合法等解题方法,这些思想方法相互联系、相互沟通、相互渗透、相互补充、将整个数学知识构成一个有机的、和谐的统一整体。

如何学习数学的思想和方法呢?

(一)注意从数学基础知识和数学思想方法两个方面来分析、研究教材

在学习教材的每一章节乃至做每一道习题时,都要用两条红线加以分析。一条红线是分析数学基础知识,另一条红线是分析教材内容中贯穿的数学思想和方法,弄清哪些章节贯穿着哪些数学思想和数学方法。例如用函数思想可以把多项式、方程、函数、数列、不等式等内容统一起来;判别式法散见于二次方程、一元二次不等式、求直线与二次曲线的交点及相切等内容之中;待定系数法重点用于解析几何中,同时还散见于因式分解、式的恒等变形等内容。

(二)重视过程的学习

数学思想和方法常常体现在概念的形成过程、结论的推导过程、规律的揭示过程、问题的探索和解决过程之中。例如,立体几何的学习过程中,体现着公理化思想和方法。在学习过程中,要逐步领悟,否则,只能是只见树木不见森林,难以把握数学知识的精神实质。

(三)注意数学思想方法的挖掘和提炼

数学思想和方法蕴含于基础知识之中,需要我们在学习中亲身体验和认真思考才能获得。例如在我们学习和推导角的、差、倍、分三角函数公式时,体验到这诸多公式中,有一个最基本的sin(α+β),其他有关公式直接地或间接地由公式sin(α+β)推导而得。

二、数学语言的学习

高中数学语言的特点是符号化语言增加了。

用特定的数学符号表示数及其关系,表示空间概念和性质,并把具有确定意义的数学符号作为“形式”对象进行运算和论证。这是数学的主要特征之一——形式化。在学习数学中,如果不能掌握数学语言,数学学习将无法进行。那么,怎样学习数学语言呢?

(一)学会文字语言、符号语言、图形语言的“互译”

在数学学习中,我们经常接触到的数学语言基本上分为三类:文字语言、符号语言、图形语言。文字语言具有通俗性,图形语言具有直观形象性,符号语言具有精确性、简约性和运算性。数学表达和运算主要运用符号语言。在学习时,我们一定要学会将这三种数学语言进行“互译”。高中数学中许多定义、定理、公式、法则、我们不但要会用文字语言叙述,更要习惯于用符号语言、图形语言来表达。

例如定理:垂直于同一条直线的两个平面平行。(文字语言)。用符号语言表达:

img8.用图形语言表达为(如图2)

img9

图2

再如,椭圆的定义——用文字语言叙述为:平面内与两个定点的距离之和等于正常数的点的轨迹叫椭圆。

用符号语言叙述为:椭圆就是集合:M={P:|PF1|+|PF2|=2α,|F1F2|=2c,α>0,c>0}

图形语言:如图3

img10

图3

(二)注意符号语言的形式与内容的统一

当我们应用概念、公式、法则进行运算和论证时,仅对符号表达式进行形式的推导,思维过程出现简缩、跳跃、越层现象,这是必要的。但是,值得注意的是,有些同学在用符号表达式进行形式推导时,只是机械地进行,不能对结果的符号表达式进行解释,重新赋予意义。主要原因是这些同学对符号所表达的内容了解不清,出现脱节现象。因此,在数学学习中,必须使符号语言形式与所表示的实际内容达到统一。

(三)注意符号语言的一般与个别的统一

例如,我们学习组合公式img11,这里的m,n在非负整数内是任意的但m≤n(注意C00=1)。在具体应用时,m、n可代表某一确定的数,还可代表某一表示非负整数的代数式。灵活运用公式,就在于这一般到个别的转化之中。另外,将零碎的、局部的知识上升到整体的、规律性的知识,又依赖于从个别到一般的转化。例如,我们通过个别对数函数y=log2x,img12,y=log10x的学习,再把对数的底用字母表示就上升到一般对数函数y=logax(a>0,a≠1)。我们只有从这两者的结合上才能深入理解数学语言的奥妙!

(四)注意符号语言与图形语言的结合

在数学学习中,利用图形语言的直观性可以更好地理解符号语言所表达的内容。在高中数学中,借助函数图像理解函数的性质,就是这两种语言结合的典型例子。