第二章 太阳系中的天体

第一节 人类的家园—地球
众所周知,地球是太阳系八大行星之一,按离太阳由近及远的次序是第三颗,位于水星和金星之后。在太阳系八大行星中,大小排行是第五。地球是唯一一个不是从希腊或罗马神话中得到的名字。“Earth”一词来自古英语和日耳曼语,当然还有许多其他语言的命名。在罗马神话中,地球女神叫Tellus,意思是肥沃的土地。在希腊语中,地球则是Gaia,代表大地母亲。地球是目前所知唯一一个存在的已知生命体的星球。

1.地球的概况
地球,这颗太阳系中蔚蓝的星球,不但是我们人类共同的家园,而且也是地球上其他生物共有的家园。认识地球的发展演化,同时也是了解我们人类自身的历史。因此,爱护地球,珍爱生命,要从认识地球的形成开始。我们对地球知识的了解掌握,也应从青少年时期抓起。

人类的家园—地球
据科学家们计算,从地球诞生迄今,已经有46亿年的历史。地球最初形成时,是一个巨大的火球。随着温度的逐渐降低,较重的物质下沉到中心,形成地核;较轻的物质漂浮上升,冷却后形成了地壳。大约在45亿年前,地球的大小已经和今天的地球相差不多了。原始的地球上,既无大气,也无海洋。在最初的数亿年间,由于原始地球的地壳较薄,加上小天体的不断撞击,造成了地球内在熔液不断上涌,地震与火山喷发随处可见。在火山喷发过程中,地球内部蕴藏着大量的气泡,从内部升起,形成云状的大气。这些云中充满了水蒸气,然后又通过降雨落回到地面。降水填满了洼地,注满了沟谷,最后积水形成了原始的海洋。到了距今25亿— 5亿年的元古代,地球上出现了大片相连的陆地,地球就形成了。经过漫长的演化发展,地球海洋里的单细胞真核生物向多细胞动植物转变。大约5亿多年前,多细胞的植物和动物,很快取代了单细胞的生物,取得了在生物界的主角地位。在以后的进化过程中,多细胞的动植物由水生走向陆地,地球上的生物群落从此展现了生机勃勃的景象。在距今6500万年的新生代,猿类出现了,它是和人类关系十分亲近的灵长类。在此后的漫长岁月里,猿类的一支开始了向人类的进化过程。距今大约300万年前,出现了世界上最早的人群。经过漫长的进化,成为今天的人类。在这300万年的时间里,地球发生了十分巨大的变化。


2.地球的主要成分
直到21世纪,我们才真正勾勒出整个地球的全貌。当然能从太空中取得它的影像是相当重要的因素,地球的太空影像对天气预测,尤其是台风、飓风的预报来说,有很大的帮助。从太空看到的地球,非常美丽可爱。
地球可以分成地壳、地幔和地核。0~40千米为地壳,40~2890千米为地幔,2890~5150千米为外地核,5150~6378千米为内地核。
地壳的成分主要是石英及硅酸盐类,如长石。整体估算,地球化学组成的重量百分比为: 铁34.6%,氧29.5%,矽15.2%,镁12.7%,镍2.4%,硫1.9%,钛0.05%。地球是平均密度最大的主要星体,地球的表面很年轻,只有5亿年左右。从天文学的角度来看,确实很短。地球表面积71%为水所覆盖,地球是太阳系迄今所知、唯一在表面可以拥有液态水的行星。水是我们的生命不可或缺的要素,因为水具有大比热(比热是体系的一种强度性质的量,反映了体系粒子能量与温度变化的关系,它又是一种统计平均值)性质,海洋的热容积成为保持地球温度恒定的一大功臣。
地球大气组成中,77%是氮气,21%是氧气,再次就是微量的氩、二氧化碳及水气。地球初形成时的大气,很可能大部分都是二氧化碳,不过大多已和碳酸盐类岩石结合,其余的则融入海洋或被绿色植物消耗。如今板块构造运动及生物作用,是大气中二氧化碳消长的持续主控者。大气中存在的水气及微量二氧化碳造成的温室效应,是维持地表温度极重要的因素,温室效应使地表温度提高了大约35℃,否则地表的平均温度将是酷寒的-21℃!若没有水气及二氧化碳,海水会冻结,我们的生命也将无法继续。此外,水气更是地球水循环及天气变化中不可或缺的角色。


3.地球的温度
据科学家们测算,地核的温度大约是4700℃,比太阳光球表面温度6000℃略低。地球上最高温度,发生在闪电中。一次闪电能释放100亿焦耳的能量,达到30000℃,是太阳表面温度的5倍,但比太阳核心的温度还低很多。 地球上最冷的地方在哪里?北半球的“冷极”在西伯利亚东部的奥伊米亚康,1961年1月最低温度是–71℃;南半球的“冷极”在南极大陆,1960年8月24日气温为–88.3℃。

地球大气层
4.地球的运动
地球绕地轴的旋转运动,叫做地球的自转。地轴的空间位置基本上是稳定的。它的北端始终指向北极星附近,地球自转的方向是自西向东,从北极上空看,呈逆时针方向旋转。地球自转一周的时间约为23小时56分,这个时间被称为恒星日;然而在地球上,一天是24小时,这是因为我们选取的参照物是太阳。由于地球自转的同时,也在公转,这4分钟的差距,正是地球自转和公转叠加的结果。天文学上,把我们感受到的这1天的24小时,称为太阳日。地球自转产生了昼夜更替。昼夜更替使地球表面的温度不致太高或太低,适合人类生存。

地 球
地球自转的平均角速度,为每小时转动15度。在赤道上,自转的线速度是每秒465米。天空中各种天体东升西落的现象,都是地球自转的反应。人们最早就是利用地球自转来计量时间的。研究表明,每经过100年,地球自转速度减慢近2米/秒,主要是由潮汐摩擦引起的,潮汐摩擦还使月球以每年3~4厘米的速度远离地球。地球自转速度除长期减慢外,还存在着时快时慢的不规则变化,引起这种变化的真正原因目前还不清楚。
地球绕太阳的运动,叫做公转。从北极上空看,地球逆时针绕日公转。地球公转的路线,叫做公转轨道,它是近正圆的椭圆轨道。太阳位于椭圆的两焦点之一。每年1月3日,地球运行到离太阳最近的位置,这个位置称为近日点;7月4日,地球运行到距离太阳最远的位置,这个位置称为远日点。地球公转的方向也是自西向东,运动的轨道长度是9.4亿千米,公转一周所需的时间为一年,约365.25天。地球公转的平均角速度约为每日1度,平均线速度约为每秒钟30千米。公转速度在近日点时较快,在远日点时较慢。地球自转的平面叫赤道平面,地球公转轨道所在的平面叫黄道平面。两个面的交角称为黄赤交角,地轴垂直于赤道平面,与黄道平面交角为66°34',或者说赤道平面与黄道平面间的黄赤交角为23°26',由此可见地球是倾斜着身子围绕太阳公转的。


5.地球的结构
在漫长的几千年里, 由于自身的限制,人类一直以为地球是宇宙的中心,万世万物都围绕着地球运转。直到16世纪时,人类才了解到,地球只不过是太阳系的一颗行星而已。
固态的地壳厚度变化颇大,海洋地区的地壳较薄,平均约7000米厚;而大陆地壳就厚得多,平均约40千米厚。地幔占有地球的主要质量,地核反而位居其次,我们生存的空间只是整个地球极小的一部分。地核的主要成分是铁(或铁镍质),不过也可能有一些较轻的物质存在,地心的温度约有7500开(开是热力学温度单位,1开=-273摄氏度),比太阳表面温度还高;下地幔的主要成分可能是硅、镁、氧,再加上一些铁、钙及铝 ;上地幔主要成分则是橄榄石及辉石(铁镁硅酸盐岩石),也有钙和铝。这些金属都来自于地震,上地幔的物质有时会随火山喷出熔岩而被带到地表,但是我们仍无法到达固体地球的主要部分,目前的海底钻探行动,连地壳都还未挖穿。

地壳主要由石英(硅的氧化物)和类长石的其他硅酸盐构成。地壳的厚度不同,海洋处较薄,大洲下较厚。内核与地壳为实体;外核与地幔层为流体。不同的层由不连续断面分割开,这由地震数据可以得到,其中最有名的要数地壳与上地幔间的莫霍面—不连续断面。
不像其他类地行星,地球的地壳由几个实体板块构成,各自在热地幔上漂浮,理论上称其为板块说。它被描绘为具有两个过程:扩大和缩小。扩大发生在两个板块互相远离,下面涌上来的岩浆形成新地壳时;缩小发生在两个板块相互碰撞,其中一个的边缘部分伸入了另一个的下面,在炽热的地幔中受热而被破坏。在板块分界处有许多断层(比如加利福尼亚的圣安得列斯断层),大洲板块间也有碰撞(如印度洋板块与亚欧板块)。目前地球上有八大板块:北美洲板块、南美洲板块、南极洲板块、亚欧板块、非洲板块、印度与澳洲板块、纳斯卡板块和太平洋板块。还有超过20个小板块,如阿拉伯板块、菲律宾板块等。地震经常在这些板块交界处发生。
知识小百科
地球知识知多少?
地球离太阳的平均距离(即一个天文单位):149,598,020千米
日地最远距离7月2日:152,100,000千米
日地最近距离(1月2日):147,100,000千米
地球的公转平均速度:29.79千米/秒
在远日点的公转速度:29.3千米/秒
在近日点的公转速度:30.8千米/秒
地球公转的轨道长度:393,120,000千米
地球公转的轨道偏心率:0.0167
地球公转一周的时期(回归年):365日5时48分46秒(即365.242日)
地球自转周期:23时56分4秒
黄道倾斜(黄赤交角):23°27′
赤道半径长皮a:6,378,140米
极半径长度b:6,356,863米
扁率(a-b)/2:1:298.25
平均半径(与地球椭球体等体积的球体半径):6,371,110米
子午线周长:40,008,548米
地球体积:1,083,320,000,000立方米
地球质量:5.976×1027克
地球平均密度:5.52克/立方厘米
6.地球的卫星
月球俗称月亮,也称太阴,是地球唯一的天然卫星。在太阳系里,除水星和金星外,其他行星外面都有天然卫星。月球的年龄大约有46亿年。月球有壳、幔、核等分层结构。最外层的月壳平均厚度为60~65千米。月壳下面到1000千米深度是月幔,它占了月球的大部分体积。月幔下面是月核,月核的温度约为1000℃,很可能是熔融状态。月球直径约3476千米,是地球的1/4;体积只有地球的1/49;质量约7350亿吨,相当于地球质量的1/81;月球表面的重力,差不多是地球重力的1/6。

月球表面有阴暗的和明亮的区域。早期的天文学家在观察月球时,以为发暗的地区都有海水覆盖,因此把它们称为“海”,著名的有云海、湿海、静海等;而明亮的部分是山脉,那里层峦叠嶂,山脉纵横,到处都是星罗棋布的环形山。位于南极附近的贝利环形山直径295千米,可以把整个海南岛装进去。最深的山是牛顿环形山,深达8788米。除了环形山,月面上也有普通的山脉。高山和深谷迭现,别有一番风光。

宇航员在月球上考察
月球约一个农历月绕地球运行一周,而每小时相对背景星空,移动0.5度,即与月面的视直径相仿。与其他卫星不同,月球的轨道平面较接近黄道面,而不是在地球的赤道面附近。
因为月球的自转周期和它的公转周期完全一样,月球永远用同一面向着地球。自月球形成以来,地球便一直受到一个力矩的影响,引致自转速度减慢,这个过程称为潮汐锁定。因此,部分地球自转的角动量转变为月球绕地公转的角动量,其结果是月球以每年约38毫米的速度远离地球。同时地球的自转越来越慢,一天的长度每年变长15微秒。
月球对地球所施的引力,是潮汐现象的起因之一。月球围绕地球的轨道为同步轨道,所谓的同步自转并非严格。由于月球轨道为椭圆形,当月球处于近日点时,它的自转速度便追不上公转速度,因此我们可见月面东部达东经98度的地区;相反,当月球处于远日点时,自转速度比公转速度快,因此我们可见月面西部达西经98度的地区。这种现象称为经天秤动。
白道面与黄道面的两个交点称为月交点,其中升交点(北点)指月球通过该点往黄道面以北;降交点(南点)则指月球通过该点往黄道以南。当新月刚好在月交点上时,便会发生日食;而当满月刚好在月交点上时,便会发生月食。

月 球

月球背面的结构和正面差异较大。月海所占面积较少,而环形山则较多。地形凹凸不平,起伏悬殊最长和最短的月球半径都位于背面,有的地方比月球平均半径长4千米,有的地方则短5千米,如范德格拉夫洼地。月球背面未发现“质量瘤”。背面的月壳比正面厚,最厚处达150千米,而正面月壳厚度只有60千米左右。
月球本身并不发光,只反射太阳光。月球亮度随着日、月间角距离和地、月间距离的改变而变化。由于月球上没有大气,再加上月面物质的热容量和导热率又很低,因而月球表面昼夜的温差很大。白天,在阳光垂直照射的地方温度高达127℃;夜晚,温度可降低到-183℃。这些数值只表示月球表面的温度。用射电望远镜观测可以测定月面土壤中的温度,这种测量表明,月面土壤中较深处的温度很少变化,这正是由月面物质的导热率低造成的。

7.地球的宇宙环境
地球的宇宙环境,是指以地球为中心的宇宙环境,可以从宏观和微观两个层面理解。宏观层面上,是指地球在天体系统中所处的位置,即地月系— 太阳系— 银河系— 总星系;微观层面上,是指地球在太阳系中所处的位置。在无限的宇宙空间中,地球只不过是沧海之一粟,它处在永不止息的运动中。
(1)地球的内部环境
地球内部到底是什么样,至今也没有确切的答案。但有一点可以肯定,假设地下王国真的存在,那么他们必定掌握高于地表人的科学技术,诸如飞碟等一系列未解之谜也就不难获得答案。不少地球物理专家认为,地球的现有重量是6兆吨的百万倍,假如地球内部不是空的,它的重量应远不止此。

地球的结构

地震波的传波反映了地球的内部结构
地下王国之说,引发了科学界一场有关“地球空洞说”的激烈争论,结果如何,人们只能拭目以待。但是它启发了我们地表人,当地球气候发生骤变或其他地表灾难发生时,我们地表人转入地下或许比移居外星球更具有现实意义。

大气层下的陆地
(2)地球与人口的关系
从资源与人类的关系以及环境与人类的关系看,地球上的人口有一个数量限制:人口数量=适合人类居住的面积/个体生产和生活所需要的场地。从生产和生活所需要的角度看,人类每个个体生产和生活所需要的场地为1500平方米。根据这个公式,可以算出人类人口的上限。

大气层下的陆地
人口普查信息,仅是数字地球庞大信息家族的一个小小的成员。数字地球可将人口普查信息以及其他地球空间数据融于一体,如将人口信息按部门、行政单元统一存档管理,并通过互联网与地物空间特征相呼应。通过数字地球,人们可浏览地球上某一国家或地区的系列电子地图(如地形、水系、土地利用、人口分布等)和说明文字, 并获得有关人口及其居住空间的详细信息,包括总人口、男女比例、文化程度、民族、职业、经济、教育、商业 、医疗卫生、公共福利、就业和社会保险等。通过访问个人主页,可获得包括照片在内的详细信息。卫星遥感、地理信息系统和互联网技术支撑下的数字地球,具有强大的分析、评价和模拟能力。例如,美国加利福尼亚地区彭德尔顿的科学家通过收集地形、土壤类型、年降雨量、植被、土地利用及土地所有权等信息,可模拟出不同人口增长对生物多样性的影响。又如,人口普查数据可模拟出城市人口的动态增长、人口分布和人口迁移。例如,“三峡工程”这样的大型工程项目中的移民问题,都可借助数字地球的网络功能、互相操作以及地理信息系统技术来解决。

拥挤的车站
知识小百科
世界地球日
1970年4月22日,美国人为了解决环境污染问题,自发地掀起了一场声势浩大的群众性环境保护运动。从此,美国民间组织提议把每年的4月22日定为“地球日”,它的影响随着环境保护的发展而日趋扩大,最后超过了美国国界,得到了世界许多国家的积极响应。
“地球日”诞生后的30多年中,世界范围内的环境保护工作取得了很大的进展。1972年6月,联合国召开了具有划时代意义的人类环境会议。1973年,成立了联合国环境规划署。许多国家都相继成立了环境保护管理机构和科研机构,环境保护被提上了许多国家政府的重要议事日程。联合国把每年的4月22日作为“世界地球日”,每次都要以不同的主题举行各种活动纪念“地球日”,以此来更好地保护我们的家园— 地球。

第二节 红色的行星—火星
1.火星概况
火星是太阳系中距太阳第四远的行星,也是第七大行星。火星的火红色的表面,自古就吸引着人们,希腊称之为战神,这或许是由于它颜色鲜红,所以火星有时被称为“红色行星”,而三月份的名字(March)也得自于火星。古代人们观测火星就和观测其他天体一样,大部分是为了占星。直到17世纪之后,才开始出于科学目的,如开普勒探索行星运动定律时,就依据了第谷积累的大量而精密的火星运行的观测资料。科学家认为火星是太阳系中,最适合人类居住的星球(地球除外)。此外,火星也深受科幻小说家的喜爱。

知识小百科
火星表面为什么是红色的?
科学探测表明,火星表面的大部分地区被红色的硅酸盐、赤铁矿等铁的氧化物及其他金属化合物覆盖,因而火星呈现明亮的橙红色。火星的天空也呈现橙红色,科学家们认为这是由于火星稀薄的空气折射阳光后出现的独特景色。

火星表层
火星的轨道是显著的椭圆形。因此,在接受太阳照射的地方,近日点和远日点之间的温差将近160℃。这对火星的气候产生了巨大的影响,火星上的平均温度大约为218K,但却具有从冬天的140K到夏日白天的将近300K的跨度。尽管火星比地球小得多,但它的表面积,却相当于地球表面的陆地面积。火星表面积是地球表面积的28%,火星的直径为6786千米,每24.62小时自转一周。
除地球外,火星是具有各种有趣地形的固态表面行星,其中不乏一些壮观的地形,如奥林匹斯山脉。奥林匹斯山脉在地表上的高度有24千米,是太阳系中最大的山脉。它的基座直径超过500千米,并被一座高6000米的悬崖所环绕。
火星的表面有很多年代已久的环形山,但是也有不少形成不久的山谷、山脊、小山及平原。
火星的南半球,有与月球上相似的曲型的环状高地。相反,它的北半球大多由新近形成的低平的平原组成,南北边界上出现几千米的巨大高度变化。这些平原的形成过程十分复杂。
火星的内部情况,只是依靠它的表面情况资料和大量的相关数据来推断的。一般认为,它的核心是由半径为1700千米的高密度物质组成,外包一层比地球的地幔更稠的熔岩,最外层是一层薄薄的外壳。相对于其他固态行星而言,火星的密度较低,这表明火星核中的铁(镁和硫化铁)可能含有较多的硫。

如同水星和月球一样,火星也缺乏活跃的板块运动。没有迹象表明,火星发生过能造成像地球般如此多褶皱山系的地壳平移活动。由于没有横向的移动,在地壳下的巨热地带,相对于地面处于静止状态。人们却未发现,火山最近有过活动的迹象。虽然,火星可能曾发生过很多火山运动,但却从未有过任何板块运动。


火星20亿年前可能有水存在
火星上曾有过洪水,地面上也有一些小河道,十分清楚地证明了,许多地方曾受到侵蚀。在过去,火星表面存在过干净的水,甚至可能有过大湖和海洋。但是这些东西看来只存在很短的时间,而且估计距今也有大约40亿年了。
火星的早期与地球十分相似,火星上几乎所有的二氧化碳都被转化为含碳的岩石。但由于缺少地球的板块运动,火星无法使二氧化碳再次循环到它的大气中,从而无法产生意义重大的温室效应。因此,即使把它拉到与地球距太阳同等距离的位置,火星表面仍比地球冷得多。
火星的那层薄薄的大气,主要是由余留下的二氧化碳(95.3%)、氮气(2.7%)、氩气(1.6%)、微量的氧气(0.15%)和水汽(0.03%)组成。火星表面的平均大气压强仅为大约7毫巴,还不到地球大气压强的1%。但它随着高度的变化而变化,在盆地的最深处可高达9毫巴,而在奥林匹斯山脉的顶端却只有1毫巴。但是它也足以支持偶尔席卷整颗行星的飓风和大风暴。火星那层薄薄的大气层也能制造温室效应,但那些仅能提高其表面5K的温度,比我们所知道的金星和地球的少得多。

矿物中含有水合二氧化硅
火星的两极,永久地被固态二氧化碳(干冰)覆盖着。这个冰罩的结构是层叠式的,它由冰层与变化着的二氧化碳层轮流叠加而成。在北部的夏天,二氧化碳完全升华,留下剩余的冰水层。由于南部的二氧化碳从没有完全消失过,所以我们无法知道,在南部的冰层下是否也存在着冰水层。这种现象的原因还不知道,但或许是由于火星赤道面与其运行轨道之间的夹角的长期变化,引起气候的变化造成的。或许在火星表面下较深处也有水存在。这种因季节变化而产生的两极覆盖层的变化,使火星的气压改变了25%左右。


矿物中含有水合二氧化硅
在火星的热带地区,有很大一片引力微弱的地方,这是由火星勘测器在它进入火星轨道时获得的意外发现,它们可能是早期外壳消失时遗留下的。这或许对研究火星的内部结构、过去的气压情况,甚至是古生命存在的可能,都十分有用。
在夜空中,人们用肉眼很容易看见火星。由于它离地球十分近,所以显得很明亮。科学家根据火星的土壤得知,火星曾经经历过水灾,可能就是因为这场洪水,而导致火星上的人类灭亡,然后在火星上只遗留下了一些低智能生物,而没有高智能生物。
2.奇特的火星地理
火星和地球一样,拥有多样的地形,有高山、平原和峡谷。由于重力较小等因素,地形尺寸与地球相比,也有不同的地方。南北半球的地形,有着强烈的对比:北方是被熔岩填平的低原,南方则是充满陨石坑的古老高地,而两者之间以明显的斜坡分隔。火山地形穿插其中,众多峡谷也分布各地,南北极则有以干冰和水冰组成的极冠,风成沙丘也广布整个星球。随着卫星拍摄的照片越来越多,会发现更多耐人寻味的地形景观。
(1)火山

火星上的火山
火星的火山和地球的火山不太一样,除了重力较小,能使山长高之外,缺乏明显的板块运动。火山分布以热点为主,而地球有火环的构造。火星的火山,主要分布于塔尔西斯高原、埃律西姆地区,还有零星分布在南方高原上,例如希腊平原东北的泰瑞纳山。
地形图中,火星西半球耸立着一个醒目的特征,中央即为塔尔西斯高原,高约14千米,宽过6500千米,伴随着盛行火山作用的遗迹,包含五座大盾状火山,包括太阳系最高的奥林匹斯山,有21287千米高,550千米宽。其他四座包括艾斯克雷尔斯山、帕弗尼斯山、阿尔西亚山和亚拔山。在大火山之间,还散布着零星的小火山。
在火星的另一端,还有一个较小的火山群,以14127千米高的埃律西姆山为主体,北南各有较矮的赫克提斯山和欧伯山。
(2)峡谷
火星的峡谷,是由水和火山活动形成的。由水造成的峡谷,可能是洪水短时间冲刷成的,稳定的流水侵蚀成的或由冰川侵蚀而成的;火山活动喷发的熔岩流,也可造成熔岩渠道。此外,峡谷还可能由地壳张裂造成,如水手峡谷。

火星上的水手峡谷
(3)水与冰
在火星的低压下,水无法以液态存在,只在低海拔区可短暂存在。而冰倒是很多,如两极冰冠就包含大量的冰。2007年3月,美国国家航天航空局声称,南极冠的冰假如全部融化,可覆盖整个星球达11米深。另外,地下的水冰永冻土,可由极区延伸至纬度约60°的地方。科学家推论有更大量的水冻在厚厚的地下冰层,只有当火山活动时,才有可能释放出来。史上最大的一次是在水手峡谷形成时,大量水释出,造成的洪水刻画出众多的河谷地形,流入克里斯平原。另一次较小但较近期的一次,是在500万年前科伯洛斯槽沟形成时,释出的水在埃律西姆平原形成冰海,至今仍能看见痕迹。火星全球勘测者所照的高分辨率照片显示出有关液态水的历史。尽管有很多巨大的洪水道和具有树枝状支流的河道被发现,但还是没发现更小尺度的洪水来源。科学家推测这些河道可能已被风化侵蚀,表示这些河道很古老。火星全球勘测者高解析照片,也发现数百个在陨石坑和峡谷边缘上的沟壑。它们趋向坐落于南方高原、面向赤道的陨石坑壁上。因为没有发现部分被侵蚀或被陨石坑覆盖的沟壑,科学家推测它们应非常年轻。
3.火星的卫星
火星有两个小型的近地面卫星— 火卫一和火卫二。这两个卫星可能像C型小行星一样,由富含碳的岩石组成。但它们不可能由纯岩石组成,因为它们的密度太低。它们很可能是由岩石与冰的混合物组成的,并且它们都有很深的地壳坑。

4.火星的尘暴
尘暴是火星大气中独有的现象,小规模的尘暴经常出现,每个火星年还会发生一次席卷全球的大尘暴。尘暴风速之大,令人难以想象。地球上的大台风,风速是每秒60多米,而火星上的尘暴风速,竟高达每秒180多米。1971年,当美国“水手”9号火星探测器刚刚走到距离火星一半的路程时,就遇到了一场前所未有的大尘暴,火星表面70~80千米的高空,被尘埃笼罩,白茫茫一片。除了在火星赤道附近,隐约见到4个坑洞外,其他地方则一片模糊,什么也看不清。这场特大尘暴,竟连续不断地刮了近4个月,才渐渐平息下来。而“水手”9号为了拍照,不得不等了3个月。

火星北极的春天风暴

火星表层

火星上存在的冰迹
知识小百科
火星上有生命吗?
火星在许多方面都与地球相近,有被大气包围着的固体表面,有四季的交替和季节的变化。它的极冠夏天缩小,冬天扩大,像是冰雪的消融和冻结。因此,科学家们曾猜测,火星上有生命存在。为了探索火星生命的秘密,近几十年来已有20余只探测器对火星做过科学探测,其中主要是美国的“水手”9号、“海盗”1号和“海盗”2号。探测结果表明:火星上没有江河湖海,土壤中也没有植物、动物或微生物的任何痕迹,更没有“火星人”等智慧生命的存在。不过,“海盗”1号和2号探测器,在事先选定的火星上最有希望存在生命的地区采集的土样,在地球上进行的实验过程中,发生了某种变化。但科学家们无法确定,这种变化是由微生物的新陈代谢引起的,还是土壤中某种化学过程的结果。因此,目前还不能完全排除火星上存在低级生物的可能性。随着天空探测技术的发展,火星生命之谜将会被彻底揭开。

火星南极的冰
第三节 公转最快的行星—水星
1.水星概况
在太阳系八大行星中,水星是最小的行星。它和太阳的平均距离为5790 万千米,约为日地距离的0.387,是距离太阳最近的行星。正因如此,它受到的太阳引力也最大,轨道速度为每秒48千米,比地球的轨道速度快18千米。这样快的速度,只需15分钟就能环绕地球一周,只需88天就能绕太阳一周,所以它是公转最快的行星。它比月球大1/3,是最靠近太阳的行星。水星目视星等可见度范围是0.4~5.5。水星如此接近太阳,常常被猛烈的阳光淹没。它的轨道距太阳4590万~6970万千米,因此望远镜很少能够仔细观察它。水星没有自然卫星,靠近过水星的探测器只有美国探测器“水手10号”和美国发射的“信使号”探测器。1974—1975年,“水手10号”探索水星时,只拍摄到大约45%的表面;2008年1月,“信使号”掠过水星。

水 星
水星的英文名字,是来自罗马神话中众神的使者墨丘利(对应希腊神话中的赫耳墨斯)。水星符号是上面一个圆形下面一个交叉的短垂线和一个半圆形,和墨丘利所拿魔杖的形状一样。公元前5世纪,水星实际上被认为是两个不同的行星,这是因为它时常交替地出现在太阳的两侧。当它出现在傍晚时,它被叫做墨丘利;但是当它出现在早晨时,为了纪念太阳神阿波罗,它被称为阿波罗。毕达哥拉斯后来指出,它们实际上是相同的一颗行星。公元前3000年的苏美尔人也发现了水星。
水星的轨道偏离正圆程度很大,近日点距太阳仅4600万千米,远日点却有7000万千米。在轨道的近日点,它以十分缓慢的速度按岁差围绕太阳向前运行。水星因太阳的引力场而绕其公转,太阳引力场极其巨大。

水 星
水星在许多方面与月球相似,它的表面有许多陨石坑,而且十分古老。一方面,它没有板块运动;另一方面,水星的密度比月球大得多 ,水星密度为5.43克/立方厘米,而月球是3.34克/立方厘米。水星是太阳系中仅次于地球、密度第二大的天体。事实上,地球的密度高,部分源于万有引力的压缩。若不是因为这个原因,水星的密度将大于地球,这表明水星的铁质核心,比地球的相对要大些,很有可能构成了行星的大部分。因此,相对而言,水星仅有一圈薄薄的硅酸盐地幔和地壳。
巨大的铁质核心半径为1800~1900千米,是水星内部的支配者。硅酸盐外壳仅有500~600千米厚,至少有一部分核心大概成熔融状。
事实上,水星的大气很稀薄,几乎不存在,由太阳风带来的被破坏的原子构成。水星温度如此高,使得这些原子迅速地散逸至太空中,与地球和金星稳定的大气相比,水星的大气频繁地被补充更换。
水星的表面表现出巨大的急斜面,有些达到几百千米长,3000千米高。有些横处于环形山的外环处,而另一些急斜面的面貌表明,它们是受压缩形成的。据估计,水星表面收缩了大约0.1%。
水星上最大的地貌特征之一是卡路里盆地,直径约为1300千米。人们认为它与月球上最大的盆地相似。除了布满陨石坑的地形,水星也有相对平坦的平原,有些也许是古代火山运动的结果,但另一些大概是陨石所形成的喷出物沉积的结果。
2.水星的温度和日照情况
因为没有大气的调节,距离太阳又非常近,水星表面的日照比地球强8.9倍,所以在太阳的烘烤下,向阳面的温度最高时可达430℃,但背阳面的夜间温度可降到零下160℃,昼夜温差近600℃,是行星表面温差最大的冠军,这真是一个处于火和冰之间的世界,所以它是表面温差最大的行星。令人惊讶的是,1992年进行的雷达观察显示,水星的北极有冰。一般相信,这些冰在阳光永远无法照射到的环形山底部,是由于彗星的撞击或行星内部的气体冒出表面积累而成的。

温差极大的在气环境
3.水星的大气环境
据科学探测,水星只有微量的大气,水星的大气极其稀薄。实际上,水星大气中的气体分子与水星表面相撞的频密程度,比它们之间互相相撞要高许多。出于这些原因,水星应被视为是没有大气的。它的“大气”主要由氧、钾和钠组成。
水星的大气非常少,主要成分为氦(42%)、气化钠(42%)和氧(15%)。大气在白天气温非常高,平均地表温度为179℃,最高为427℃,最低为-173℃。因此水星上看来不可能存在水,但1991年科学家在水星的北极发现了一个不同寻常的亮点,形成这个亮点的可能是在地表或地下的冰。水星上真的有可能存在冰吗?由于水星的轨道比较特殊,在它的北极,太阳始终只在地平线上徘徊。在一些陨石坑内部,可能由于永远见不到阳光而使温度降至-161℃以下。这样低的温度,就有可能凝固从行星内部释放出来的气体,或积存从太空来的冰。
组成水星大气的原子,不断被遗失到太空中,所以钾或钠原子在一个水星日上,大约有3小时的平均“寿命”。散失的大气不断被一些机制所替换,如被行星引力场俘获、火山蒸汽以及两极冰冠的除气作用。

4.水星的地形与地貌
据天文观测,水星的环形山类似月球。水星表面最显著的特征(只包括已经被拍摄过的部分)之一是一个直径达到1350千米的冲击性环形山。卡路里盆地,是水星上温度最高的地区。水星地形被标记为多起伏状,原因是几十亿年前,水星的核心冷却收缩引起的外壳起皱。大多数的水星表面,包括两个不同的年龄层。除此之外,水星有“显著性”的“周期性膨胀”。

水星表面形似月球表面
水星的表面很像月球,满布着环形山、大平原、盆地、辐射纹和断崖。水星表面大大小小的环形山星罗棋布,既有高山,也有平原,还有令人胆寒的悬崖峭壁。据统计,水星上的环形山有上千个,这些环形山比月亮上的环形山的坡度平缓些。
水星表面上环形山的名字,都是以文学艺术家的名字来命名的,而没有用科学家名字命名。这是因为月球面环形山大都用文学艺术家的名字命名。水星表面被命名的环形山直径,都在20千米以上,而且都位于水星的西半球。这些名人的大名,将永远与日月同辉,以纪念他们为人类作出的卓越贡献。
5.水星的地质构造
据科学观测,水星内部构造很像地球,分为壳、幔、核三层。水星的半径为2439千米,是地球半径的38.2%,18个水星合并起来才抵得上1个地球的大小,质量为 3.33×1026克,为地球质量的 5.58%,平均密度为 5.433克/厘米3,略低于地球的平均密度。在八大行星中,除地球外,水星的密度最大。由此天文学家推测,水星的外壳是由硅酸盐构成的,其中心有个比月球大得多的铁质内核。
水星所含有的铁的百分率,超过任何其他已知的星系行星。核球的主要成分是铁、镍和硅酸盐,所以水星应含铁2万亿亿吨,按目前世界钢的年产量(约8亿吨)计算,可以开采2400亿年,真是一座取之不尽,用之不竭的大铁矿!
在1992年的雷达观察中显示,水星含有冻结的水冰。这被认为只存在于那永远的阴暗一面的环形山底,被彗星或从行星内部喷发出来,并堆积在那里。
6.水星的运动

水星表面
据科学测算,水星离太阳的平均距离为5790万千米,绕太阳公转轨道的偏心率为0.206,故其轨道很扁。太阳系天体中,除冥王星外,要算水星的轨道最扁了。水星在轨道上的平均运动速度,为48千米/秒,是太阳系中运动速度最快的行星,它绕太阳运行一周只需88天。除公转之外,水星本身也有自转,而自转周期正好是公转周期的2/3。

探测器飞向水星
地球每自转一周,就是一昼夜,而水星自转三周才是一昼夜。水星上一昼夜的时间,相当于地球上的176天。因此,人们说水星上的一天等于两年。由于水星在近日点时,总以同一经度朝着太阳,在远日点时,以相差90°的经度朝着太阳,所以水星随着经度的不同而出现季节变化。
水星的运行轨道是偏心的,半径从4600万~7000万千米变化。围绕太阳的缓慢岁差,不能完全地被牛顿经典力学所解释,这称为“水星近日点进动”。随着科学的发展,爱因斯坦的广义相对论,后来提供了一种可以消除这个小误差的解释。
在水星的表面上的一些地方,在同一个水星日里,当在太阳升起时,可以看见太阳先上升,然后倒退,最后落下,然后再一次上升。这是因为大约4天的近日点周期,水星轨道速度,完全等于它的自转速度,以至于太阳的视运动停止。在近日点时,水星的轨道速度,超过自转速度。因此,太阳看起来会逆行性运动,在近日点后的4天,太阳恢复正常的视运动。
直到1965年使用雷达观测后,观察数据否决了水星对太阳是潮汐固定的想法:自转使得所有时间里,水星保持相同的一面对着太阳。水星轨速振谐为3 :2,这就是说,自转三次的时间,是围绕太阳公转两次的时间;水星的轨道离心,使这个谐振持稳。最初天文学家认为,它有被固定的潮汐,是因为水星处于最好的观测位置,它总是在3 :2谐振中的相同时刻,展现出相同的一面,就如同它完全地被固定住一样。水星的自转,比地球缓慢59倍。
7.水星的磁场

水星磁场
据科学观测,水星有一个相对强劲的磁场,赤道上的磁场约0.004高斯,两极处略微强些,约0.007高斯;地球赤道上的磁场强度在0.29~0.40高斯,两极处的强度也略大,地磁北极约0.61高斯,南极约0.68高斯。大体上说来,水星表面磁场的强度大致是地球的 1%。这个磁场的产生方式和地球磁场的产生方式相似,也是凭借核心金属液体的流动而产生磁场。根据目前的估计,水星核心的热度不足以热液化镍— 铁合金,但是它应该可以液化一些低熔点的物质,比如硫或锍。水星的磁场,也可能是一个现在已经停止的早期的发电机效应产生的残余产品,磁场已经“冻结(保存)”在固体磁性材料中。

水 星
水星的偶极磁场与地球的很相像,极性也相同,即水星磁场的北极在水星的北半球,其南极在南半球。
8.水星的观测
水星最亮的时候,目视星体达到-1.9。由于水星和太阳之间的视角距离不大,使得水星淹没在耀眼的阳光中而不得见。即使在最宜于观察的条件下,也只有在日落西山之后在西山低处的夕阳余晖中,或是日出之前在东方地平线,才能看到它。
观察水星的最佳时机,是在日出前50分钟或日落后50分钟。需要牢记的是,不要直接看太阳。若用望远镜看水星,则可以选择水星在其轨道上处于太阳一侧或另一侧,离太阳最远时。若是在西边,则可以在清晨观测;若是在东边,则可以在黄昏观测。知道了日期,又知道在太阳的哪一侧搜寻,还应该尽可能挑一个地平线没有东西阻隔的地点。搜寻水星,要在离太阳升起或落下处大约10厘米的位置。你将会看到一个小小的发出淡红色光的星星。在其被太阳光淹没之前,你大概可以观测它2个星期。6个星期之后,它又会在相对的距角处,重新出现。

知识小百科
你知道水星凌日吗?
当水星走到太阳和地球之间时,我们在太阳表面上会看到一个小黑点穿过,这种现象称为水星凌日。其道理和日食类似,由于水星和地球的绕日运行轨道不在同一个平面上,而是有一个7度的倾角。因此,只有水星和地球两者的轨道处于同一个平面上,而日、水、地三者又恰好排成一条直线时,才会发生水星凌日。地球每年5月8日前后,经过水星轨道的降交点;每年11月10日前后,又经过水星轨道的升交点。所以,水星凌日只能发生在这两个日期的前后。由于水星比月亮离地球远,视直径仅为太阳的190万分之一。水星挡住太阳的面积太小,不足以使太阳亮度减弱,所以用肉眼看不到水星凌日,只能通过望远镜进行投影观测。水星凌日,每100年平均发生13次。最近一次凌日是在1999年11月16日5时42分。

水星凌日
第四节 逆向自转的行星—金星
1.金星概况

金 星
按照距离太阳的远近,金星是八大行星中的第二颗,是离地球最近的行星。中国古代称金星为“太白”或“太白金星”。它有时是晨星,黎明前出现在东方天空,被称为“启明”;有时是昏星,黄昏后出现在西方天空,被称为“长庚”。除了太阳和月亮之外,金星是全天中最亮的星,比著名的天狼星(除太阳外全天最亮的恒星)还要亮14倍,犹如一颗耀眼的钻石。于是古希腊人称它为阿芙罗狄忒— 爱与美的女神,而罗马人则称它为维纳斯— 美神。

地球的孪生姐妹—金星
金星和水星一样,也是没有天然卫星的大行星。因此,金星的夜空中没有“月亮”,但有“星星”,最亮的“星星”是地球。由于离太阳比较近,所以在金星上看到太阳的大小比在地球上看到的大1.5倍。
有人称金星是地球的孪生姐妹,从结构上看确实如此,金星和地球有不少相似之处。金星的半径约为6073千米,只比地球半径小300千米,体积是地球的0.88倍,质量是地球的4/5。但两者的环境却有天壤之别,金星的表面温度很高,不存在液态水,加上极高的大气压力和严重缺氧等残酷的自然条件,金星不可能有任何生命存在。因此,金星和地球只是一对“貌合神离”的姐妹。
金星周围有浓密的大气和云层。这些云层为金星表面罩上了一层神秘的面纱。人们只有借助于射电望远镜才能穿过这层大气,看到金星表面的本来面目。
金星的自转很特别,是太阳系内唯一逆向自转的大行星,自转方向与其他行星相反,是自东向西。因此,在金星上看,太阳是西升东落。
金星逆向自转现象,有可能是很久以前金星与其他小行星相撞造成的,但是现在还无法证明。除了这种不寻常的逆行自转外,金星还有一点不寻常,就是金星的自转周期和轨道是同步的。
知识小百科
你知道金星历法吗?
金星历法,是一种以金星的周期活动为标准的历法规则。然而,金星历法并不是科幻小说的作品,而是切切实实曾在古代玛雅文明出现过的历法系统。
2.金星的地质结构
没有直接资料可以分析金星的内部结构,只能从理论上进行推算。科学家推测,金星的内部结构和地球相似,有一个半径约3100千米的铁— 镍核,中间层是由硅、氧、铁、镁等化合物组成的“幔”,外层是由硅化合物组成的很薄的“壳”。金星的平均密度,次于地球与水星,在八大行星中排第三位。
美国Magellan飞行器最近传送回的重力数据表明,金星的外壳比早先假定的硬得多,厚得多。
3.金星的地形地貌
金星近来正在经历表面的重新构筑,大约90%的金星表面是由不久前才固化的玄武岩熔岩形成的,当然也有极少量的陨石坑。金星上最古老的特征,仅有8亿年历史,大多数地区都相当年轻,但也有数亿年的时间。最近的发现表明,金星的火山在隔离的地质热点依旧活跃。

金星浓厚的大气,迫使流星等天体在到达金星表面之前减速,这是陨石坑极少的原因,它的陨石坑不超过3.2千米。金星上没有小环形山,应该是小行星在进入金星的稠密大气层时就被烧光了。金星上的环形山都是一串串的,应该是由于大的小行星在到达金星地表前,直接碎裂在大气中造成的。

据科学观测,金星表面十分干旱,所以金星上的岩石要比地球上的更坚硬,从而形成更陡峭的山脉、悬崖峭壁和其他地貌。在金星表面的大平原上,有两个主要的大陆状高地。北半球的高地叫伊师塔地;南半球的高地叫阿芙罗狄蒂地,长约9700千米、宽约3200千米,面积比中国的青藏高原大两倍。阿芙罗狄蒂地的面积与南美洲相当。这些高地之间有许多广阔的低地。在这个高原的东北端,有一条从南向北穿过赤道的大峡谷,宽280千米、深3千米、长1200千米,它是八大行星中最大的峡谷。伊师塔地大约有澳大利亚那么大,拥有金星最高的麦克斯韦山峰,高达10.8千米,大约比喜马拉雅山高出2000米。麦克斯韦山脉包围了拉克西米高原。金星上还有一些由陨星撞击而形成的环形山,直径多在20~50千米,但不如月球和水星多。

金星火山
金星上火山密布,是太阳系中拥有火山数量最多的行星。已发现的大型火山和火山特征有1600多处。此外,还有无数的小火山,但没有人计算过它们的数量。金星表面的火山及火山活动很多。至少85%的金星表面,覆盖着火山岩。除了几百个大型火山外,在金星表面还零星分布着10万多座小型火山。从火山中喷出的熔岩流,产生了长长的沟渠,范围大至几百千米,其中最长的一条超过7000千米。从“金星”13号和14号探测器的考察结果可以看出,金星内部的岩浆里含有水分,从而动摇了以前认为金星上“先天缺水”的看法。

造型各异的金星火山
金星火山造型各异,除了比较普遍的盾状火山,这里还有很多复杂的火山特征和特殊的火山构造。到目前为止,科学家在金星上还未发现活火山。但是由于研究数据有限,尽管大部分金星火山早已熄灭,但是仍不排除小部分依然活跃的可能性。火星盾状火山,与地球上的盾状火山有相似之处。它们大都被长长的呈放射状的熔岩流所覆盖,坡度平缓。大部分火山中心,有喷射孔。因此,科学家猜测,这些盾状是由玄武岩构成的,类似于夏威夷的火山。金星上的盾状火山分布零散,并不像地球上的火山链,这说明金星没有活跃的板块构造。
迹象表明,金星火山的喷发形式也较为单一。凝固的熔岩层显示,大部分金星火山喷发时,流出的只是熔岩流,没有剧烈爆发、喷射火山灰的迹象,甚至熔岩也不似地球熔岩那般泥泞黏质。
与太阳系的其他行星相比,金星的磁场非常弱。这可能是由于金星的自转不够快,这是因为地核的液态铁因切割磁感线导致产生的磁场较弱。
知识小百科
金星上的大型盾状火山和小型盾状火山
金星有150多处大型盾状火山,这些盾状直径,多在100~600千米,高度有0.3~5千米。其中,最大的一座直径700千米,高5.5千米。比起地球上的盾状火山,金星火山显得更加平坦。事实上,最大的金星盾状火山,其基底直径已经接近火星上的奥林匹斯火山,但是由于高度不足,体积比起奥林匹斯山要小得多。
金星约有10万个直径小于20千米的小型盾状火山。这些火山通常成串分布,被称为盾状地带。已被科学家在地图上标出的盾状地带,超过550个,多数直径在100~200千米。盾状地带分布广泛,主要出现在低洼平原或低地的丘陵处。科学家发现,许多盾状地带已经被更新的熔岩平原覆盖,因此他们推测盾状地带的年龄非常古老,可能形成于火山活动初期。
4.金星上变幻莫测的大气环境
据天文观测,金星的天空是橙黄色的。它的大气密度是地球大气的100倍,大气97%以上是“保温气体”— 二氧化碳,同时还有一层厚达20~30千米的由浓硫酸液滴组成的掺杂着硫粒子的浓云。这就是金星天空呈现黄色的原因。

早晨天空中的金星与木星
金星大气层的主要成分— 二氧化碳,导致金星的温室效应很强烈。因为二氧化碳和浓云只许太阳光通过,却不许热量透过云层散发到宇宙空间。被封闭起来的太阳辐射,使金星表面变得越来越热。温室效应使金星表面温度高达465℃~485℃,在近赤道的低地,金星的表面极限温度可高达500℃。金星的表面温度不会因地区不同、季节转换和昼夜交替发生太大的改变。如果没有温室效应,金星温度会比现在下降400℃,接近地球的表面温度。金星的表面温度甚至高于水星,尽管它离太阳的距离要比水星大两倍,并且得到的阳光只有水星的1/4。
金星浓厚的云层,把大部分阳光都反射回了太空,所以金星表面接受到的太阳光比较少,大部分阳光都不能直接到达金星表面。金星热辐射的反射率大约是60%,可见光的反射率更大。所以,尽管金星比地球离太阳的距离近,它表面所得到的光照却比地球少。
金星云层顶端有强风,大约每小时350千米,但表面风速却很慢,每小时几千米不到。金星的大气压强非常大,是地球的90倍,相当于地球海洋中1000米深度的压强。金星上也有雷电,曾经记录到的最大一次闪电,持续了15分钟。
5.金星的风光
金星上面密布着厚达25千米的浓云,望远镜只能看到一个模糊不清的淡黄色圆盘,无法分辨出金星的细节。
1961年以来,美国和苏联先后向金星发射了30多个探测器,开始是飞近探测,后来发展到着陆探测。探测结果表明,金星是一个奇热、无水、任何生命都无法存活的星球。

美国和苏联发射的金星探测器上,都装有影像雷达传感器。雷达测绘表明,金星的表面与地球类似,有雄伟的山脉、广阔的平原、连绵起伏的高原、幽深的裂谷。
6.金星的观测
金星的轨道比水星的大,当处于西方或东方的最大距角时,它看起来距太阳比水星距太阳远1倍。金星是天空中最亮的天体之一,观察它的最佳时间是当太阳恰好位于地平线以下的时候。太阳落山,金星随后落下,此时它位于太阳之左;太阳升起前,金星首先升起,此时它位于太阳之右。

金星表面
你很容易分辨出金星来,它明亮而略呈黄色。当金星呈大“新月”形时,用双筒望远镜观测它是最合适的。此时,金星位于最大距角点与下合点之间。在下合点时,金星位于地球与太阳之间,我们便看不到它了,注意调好望远镜的焦距,使之能观察遥远的物体。
7. 人类探索金星的历程
金星是一颗内层行星,从地球用望远镜观察它会发现位相变化。伽利略对此现象的观察,是赞成哥白尼太阳中心说的重要证据。金星环境复杂多变,天空橙黄色,经常下硫酸雨,一次闪电最长的竟然持续15分钟!
人类对太阳系行星的空间探测,是从金星开始的。苏联和美国从20世纪60年代起,就对揭开金星的秘密倾注了极大的热情,展开探测竞争。迄今为止,发往金星或路过金星的各种探测器已经超过40个,从而获得了大量的有关金星的科学资料。
苏联开启了金星探测的先河。1975—1984年是金星探测的高潮期。各种探测资料的研究表明,金星上的地质构造仍然很活跃,金星的岩浆里含有水分。综观苏联金星探测的特点,主要是投放降落装置考察,以特殊的工艺战胜金星上高温高压,取得了金星表面宝贵的第一手资料。
苏联航天技术的辉煌成就,极大地刺激了美国人。从1978年起,美国把行星探测活动的重点转移到了金星。为了在探测金星方面取得更大的成就,美国宇航局决定要利用雷达探测技术方面的先进设备,透过金星浓密的云层,详细勘察金星的全貌和地质构造,研究金星是否具有河床和海洋构造。未来的金星探测,需要长寿命的登陆舱、专门的下降探测装置、遥控探测气球以及监视金星大气的轨道器等。

“金星快车”
知识小百科
你知道金星凌日吗?
由于水星、金星是位于地球绕日公转轨道以内的“地内行星”,因此当金星运行到太阳和地球之间时,可以在太阳表面看到一个小黑点慢慢穿过,这种天象称之为“金星凌日”。天文学中,往往把相隔时间最短的两次“金星凌日”现象分为一组。这种现象的出现规律通常是8年、121.5年,8年、105.5年,以此循环。

美丽的金星凌日
17世纪,著名的英国天文学家哈雷曾经提出,金星凌日时,在地球上两个不同地点同时测定金星穿越太阳表面所需的时间,由此算出太阳的视差,可以得出准确的日地距离。可惜,哈雷本人活了86岁,从未遇上过“金星凌日”。在哈雷提出他的观测方法后,曾出现过4次金星凌日,每一次都受到了科学家的极大重视。
人们用10倍以上倍率的望远镜,即可清楚地看到金星的圆形轮廓,40~100倍率的望远镜观测效果最佳。天文专家提醒,在观看时,千万不能直接用肉眼、普通的望远镜或是照相机观测,而要戴上合适的滤光镜,同时观测时间也不能过长,以免被强烈的阳光灼伤眼睛。
第五节 自转最快的行星—木星
1.木星概况
木星古称岁星,是离太阳由近到远的第五颗行星,还是八大行星中最大的一颗。它的质量比其他所有的行星的总质量还大2倍,是地球质量的318倍。希腊人称木星为“宙斯”,意思是众神之王,是奥林匹斯山的统治者和罗马国的保护人。

木 星
木星是天空中第四亮的物体,仅次于太阳、月球和金星,但有时候火星更亮一些。早在史前,木星就已经被人类知晓。
1610年,伽利略通过木星的四颗卫星—木卫一、木卫二、木卫三和木卫四的观察,第一个发现了它们不以地球为中心运转,成为赞同哥白尼日心说的有关行星运动的主要依据。许多年来,人们一直认为,1609年伽利略通过他自制的望远镜发现了木卫三,所以连同木卫一、木卫二、木卫四被称为伽利略卫星。其实,木卫三是中国战国时代的天文学家甘德发现的。早在公元前346年,甘德就发现了木卫三,比伽利略早了将近2000年。
木星由90%的氢和10%的氦及微量的甲烷、水、氨水和“石头”组成,这与形成整个太阳系的原始太阳系星云的组成十分相似。土星也有类似的组成,但在天王星与海王星的组成中,氢和氦的量则少一些。
我们得到的有关木星内部结构的资料来源很不直接,并有很长时间的停滞。来自伽利略号的木星大气数据,只探测到了云层下150千米处。

在木星的卫星上观测木星表面
木星是气态行星,没有实体表面,它的气态物质密度,只是由深度的变大而不断加大。我们所看到的,通常是大气中云层的顶端,压强比1个大气压略高。云层的三个明显分层中,被认为存在着氨冰、铵水硫化物和冰水混合物。然而,来自伽利略号飞船的初步探测结果表明,云层中这些物质极其稀少,同时也表明那里的水比预计的少得多。原先预计木星大气所包含的氧是目前太阳的两倍,但实际比太阳少。

木星与木卫一
木星光亮的表面带被称作区,暗的叫做带。这些带中轻微的化学成分与温度变化,造成了多彩的地表带,支配着行星的外貌。人们很早就知道这种带子,但带子边界地带的旋涡,则由“旅行者”号飞船第一次发现。伽利略号飞船发回的数据表明,表面风速比预料的快得多,并延伸到所能观察到的一样深的地方,大约向内延伸数千千米。伽利略号飞船同时发现木星的大气层相当紊乱,这表明它内部的热量,使得大部分飓风急速运动,不像地球只从太阳处获取热量。木星表面的高速飓风,并被限制在狭小的纬度范围内。
木星表面多彩的云层是木星上最显著的现象之一,可能是由大气中化学成分的微妙差异及其作用造成的。这可能是大气中混入的硫的混合物,造成的五彩缤纷的视觉效果,但是具体原因仍无法知晓。色彩的变化与云层的高度有关:最低处为蓝色,接着是棕色与白色,最高处为红色。我们通过高处云层的洞,才能看到低处的云层。
木星向外辐射能量比从太阳处收到的多,它的内部很热,内核处温度可能高达2万K。木星并不像太阳那样由核反应产生能量,它太小,因而内部温度不够引起核反应的条件。这些内部产生的热量,可能很大地引发了木星液体层的对流,并引起了我们所见到的云顶的复杂移动过程。土星与海王星在这方面与木星类似,而天王星则不类似。

日出时分的木星与金星
宇宙飞船发回的考察结果表明,木星有较强的磁场,表面磁场强度达3~14高斯(1特斯拉=10000高斯),比地球表面磁场强得多。木星磁场和地球一样是偶极,磁轴和自转轴之间有 10°8′的倾角。但木星的正磁极不是指向北极,而是南极,这与地球的情况正好相反。由于木星磁场与太阳风的相互作用,形成了木星磁层。木星磁层的范围大而且结构复杂,在距离木星140~700万千米的巨大空间都是木星的磁层。地球的磁层只在距地心5~7万千米的范围内。木星的四个大卫星,都被木星的磁层所屏蔽,让它免遭太阳风的袭击。地球周围有条称为范艾伦带的辐射带,木星周围也有这样的辐射带。木星磁尾,至少拖长到6000万千米,已达到土星的轨道上。木星的两极有极光,这似乎是从木卫一上火山喷发出的物质,沿着木星的引力线进入木星大气而形成的。
木星没有固体外壳,它是一个液态流体行星。在木星浓密的大气下,是由液态氢组成的海洋。木星的内部,是由铁和硅组成的石质固体核,称为木星核,相当于10~15个地球的质量,温度高达30000℃。在木星内部的温度压强下,木星核的外部是大部分的行星物质集结地,以液态氢的形式存在,这使它成为了木星磁场的电子指挥者与根源。液态金属氢由离子化的质子和电子组成。液态氢分子层厚达1.4万多千米,液态的金属层厚达4.5万多千米,这两层组成木星幔。在这一层,也可能含有一些氦和微量的冰。木星幔的外面是大气层,厚约1400千米,成分和太阳差不多。在大气层中,氢占88%,氦占11%,其余1%是甲烷、氨、水蒸气和一氧化碳。木星大气中的甲烷,有些类似地球上的臭氧,具有吸引紫外线的作用。

木星被撞击后留下的空洞
2.木星的卫星
在宇宙飞船探测木星之前,人们知道木星有13颗卫星。科学家们从“旅行者2号”发回的照片上,又发现了3颗,共有16颗卫星。按距离木星中心由近及远的次序,分别是:木卫十六、木卫十四、木卫五、木卫十五、木卫一、木卫二、木卫三、木卫四、木卫十三、木卫六、木卫十、木卫七、木卫十二、木卫十一、木卫八和木卫九,它们都围绕着木星公转。离木星最远的木卫九与木星的距离比地球和月亮之间的距离远60倍,它绕木星公转一周需要758天。

木星的卫星
1610年,伽利略发现木卫一、木卫二、木卫三和木卫四,1892年,巴纳德用望远镜发现了木卫五。其他卫星都是1904年以后,用照相方法陆续发现的。1979年,“旅行者号”飞船发现了木卫十四,1980年,又先后发现木卫十五和木卫十六。除四个伽利略卫星外,其余的卫星半径多是几千米到20千米的大石头。木卫三较大,其半径为2631千米。
木卫可分为三群:最靠近木星的一群— 木卫十六、木卫十四、木卫五、木卫十五和四颗伽利略卫星,共8颗,轨道偏心率都小于0.01,顺行,属于规则卫星;其余均属不规则卫星。离木星稍远的一群— 木卫十三、木卫六、木卫十及木卫七,偏心率为0.11~0.21,顺行。离木星最远的一群— 木卫十二、木卫十一、木卫八及木卫九,偏心率0.17~0.38,逆行。
木星的四个伽利略卫星和木卫五的轨道,几乎在木星的赤道面上。“旅行者1号”曾经对这五颗卫星作了考察。
1892年,天文学家巴纳德在木卫一的轨道内发现木卫五,这个卫星形状呈卵形。“旅行者1号”发现它为浅灰色,上有一个长约130千米、宽200~220千米的微红区域,这就是位于木卫五的轨道里的木星光环。

木卫一
木卫一是16颗卫星中最著名的一颗,离木星很近,平均距离约42万千米。它的体积并不是很大,直径约3640千米,密度和大小类似月球,质量为8.93×1022千克。木卫一呈球状,整个表面光滑而干燥,有开阔的平原,有起伏的山脉和长数千千米、宽百余千米的大峡谷,还有许多火山盆地。它的颜色特别鲜红,比火星还红,可能是太阳系中最红的天体。木卫一的视星等只有4.9等,而且又被木星的光辉所淹没,因此用肉眼是无法看到它的。木卫一上空被稀薄的二氧化硫大气及钠云包围,并有很频繁的火山活动。“旅行者1号”探测器在木卫一的表面,共发现了9座火山,火山的喷发高度为70~300千米,喷发速度平均每秒1000米,比地球火山爆发大。这些火山不断地喷出由二氧化硫组成的烟,这些烟降落在木卫一的表面。这些烟是木星磁层中许多粒子的主要来源,也是木星磁层中辐射带最强的部分。木卫一是迄今在太阳系中观测到的火山活动最为频繁和激烈的天体,这一发现给天文学家对太阳系天体的研究,提供了新的启示。但是人们还存在着一些至今还未解决的问题,譬如木卫一喷射出来的是富硫的硅酸盐物质呢,还是一种新型的完全由硫和硫化物组成的物质?

木卫二
木卫二是一颗体积比月球小,但密度和月球差不多的卫星。木卫二表面非常光滑,被大量的冰覆盖着,好像是一个冰与奶油巧克力混合而成的大球体。所以从望远镜中看,它是一颗显得非常明亮的天体。木卫二的另一特征,是冰面上布满了许多纵横交错、密如蛛网的明暗条纹,这很可能是冰层的裂缝。在木卫二的表面,覆盖一层50千米厚的海洋,海洋的上面又覆盖着一层约5千米厚的冰层,也许这就是木卫二的表面如此光滑,反照率又如此高的原因。

木卫二
木卫三是木星最大的一颗卫星,它的体积比水星大,表面呈黄色,可分为盖满冰层的明亮区和冰上堆积着岩质灰尘的黑暗区,并有几处横向错开的断层、线状地形、互相平行的山脊与深沟。这些线状地形互相重叠,显示出它们形成年代的不同。因此,天文学家推断,木卫三可能曾经发生过类似地球的板块活动。
木卫四的表面,布满了密密麻麻的陨石坑,最明显的特征是一个像牛眼似的白色核心,外面被一层圆环包围着,类似同心圆盆地,直径达600~1500千米。木卫四除了坑洞以外,再也找不到其他特殊的地形,因而人们推断它是太阳系中最古老的卫星表面,应该在很早以前就终止了内部活动。
每颗伽利略卫星都有自己的特点,它们的表面、颜色、地壳构造和我们熟悉的行星很不相同。通过对伽利略卫星的研究,我们对太阳系有了更新的认识。

3. 木星环
1979年3月,美国的“旅行者1号”探测器,在穿越木星赤道平面时,第一次发现了木星的光环。4个月后,“旅行者2号”探测器再次飞临木星,并证实了这个结论。木星环距离木星中心约12.8万千米,宽约9000千米,厚约30千米,以周期为7小时左右的速度,围绕木星旋转。木星环包括亮环、暗环和晕三部分,亮环在暗环的外边,晕为一层极薄的尘云,将亮环和暗环整个包围起来。木星环的成分,是大量的尘埃和黑色的碎石,黑色的碎石不反射太阳光,难怪人们在地面上用望远镜观察了木星几百年,也发现不了它的光环。
4.木星大红斑
木星的表面,有一个非常醒目的红色卵形圆斑,叫大红斑。它是在1665年由法国天文学家卡西尼发现的。大红斑位于木星的南半球,长2万多千米,宽1.1万千米。300多年来,大红斑的颜色和亮度不断变化,但形状和大小几乎没有变。1977年,美国的“旅行者”号宇宙飞船,对大红斑作过考察,发现它是木星云层中的一个特大气流旋涡,整个旋涡在不停地沿逆时针方向,绕中心转动。现在一般认为,大红斑的旋涡中含有红磷化合物,大红斑的颜色可能就是因此产生的。至于大红斑能长期存在的原因,目前还不清楚。

木卫大红斑
5.木星上的极光和闪电
在木星的背面,有长达3万千米的极光,这是在太阳系的行星中,继地球后,所发现的第二个极光现象。它意味着,木星大气受到很多高能粒子的袭击,使大气发光。木星的大气中,还有十分强烈和频繁的闪电现象,平均每年约有250次。
知识小百科
木星会成为“第二个太阳”吗?
木星是个特殊行星,又大又重又快,它的几个特性,在科学家心中留下悬念。
其一,是木星的温度。木星表面的温度,超出它目前从太阳获得的能量所能维持的温度。根据计算出的结果,木星表面的温度应该是-168℃。空间探测器“先驱者11号”在1974年12月飞越木星时,测到木星表面温度为-148℃。这20℃的差异怎样解释呢?是否来自木星内部的热源呢?
其二,木星亮度有增亮的趋势。我国天文学家刘金沂长期研究发现,水、金、火、土星的亮度,在几千年来呈现减弱趋势。但木星亮度每年却增加2%每千年增加0.003个星等,这种现象说明什么呢?行星反射太阳光而发亮,太阳在漫长演化过程中,亮度呈减弱之势,体积膨胀,表面温度从6000℃下降到3000℃左右,木星增亮只能从自己身上找原因。结论是木星有内部热源,并且有增长之势。
其三,木星从太阳那里不断捕获能量。太阳不停向外辐射能量,挟带着带电微粒的太阳风拂过行星,其中的一部分被各种天体吸收,作为行星之王的木星,当然有本领捕获更多。因此,木星同时增加质量又增加能量,慢慢壮大起来。
其四,木星在得到太阳能源的同时,还要向外辐射能量。经研究,它释放的能量,是它从太阳那里所获得能量的两倍,说明木星的能量有一半来自它的内部,才能维持收支不平衡的能量状况。
其五,木星是由液态氢所构成,同太阳有相似的大气成分。
木星目前的质量虽然只是太阳1/1000,体积是太阳的1/1000,温度也很低。但苏联科学家苏齐科夫和萨利姆齐罗夫在1982年提出,木星的核心温度已高达280000℃,说明那里正在进行热核反应。木星的能量越来越大,且越来越热,变亮也变得更加活跃,正向“恒星”资格进军。由此他们提出了大胆的看法:30亿年后,到太阳的晚年,木星将一跃而为恒星,取代太阳的地位。观察表明,由于木星向四周施热,已融化了较近的木卫一上的冰层,木卫二、木卫三、木卫四仍有冰层覆盖着。至于木星成为恒星以后,其他行星、卫星会怎样?那时太阳系格局,将发生巨大变动。地球可能腹背受敌,生命、文明也会毁于一旦,但30亿年的漫长岁月,且不说木星到那时是否会成为恒星,人类的文明应该早已发展到一个很高的层次,完全能寻找到自己的第二个家园。
木卫——爆发的“喷泉”
由于木卫一的引力很小,又不存在空气,使火山喷出来的气体、尘埃抛得很高,然后缓缓地落下,形成一种对称的伞形结构:即接近中心的部分密度高;离中心越远,密度越低,因而称为伞形羽状物,就像羽毛状的“喷泉”,给人们留下难忘而又美好的印象。科学家就是从“旅行者1号”拍摄的8个羽状物中,获得木卫一上有火山活动的直接证据的。与地球相比,木卫一的火山活动规模是十分壮观的。在已经发现的羽状物中,最大的一个直径为1000千米,喷射高度达280千米,仅中央喷流的底部直径就有37千米。从分布上说,8个羽状物中有7个集中在赤道±30°左右,而沿经度方向大体上是随机分布的。据猜测,这种分布可能同木星对本卫一的潮汐作用相关。
这些羽状物有着共同的特征:中央部分有一个暗黑的区域,喷发物即由此被抛出,核心部分有一圈不规则的或圆形的亮环围绕着,在亮环外围是一片范围更大的扩散区域。科学家仔细地分析了“旅行者1号”的观测资料,发现木卫一上的许多区域都有这种特征。
6.木星的探测
木星的确是一个非常奇异的星球,在地球上是无法想象的,它比我们地球的直径大11倍,上面覆盖着厚厚的彩色云层。
因为木星离太阳非常遥远,所以它得到的光和热很少。它之所以在空中显得非常明亮,是因为它非常大,而且它的云层比陆地或水面能更好地反射太阳光。
我们只要支起一架小小的望远镜,就能看到这个遥远世界的许多颇有意思的景色。我们首先会看到木星披着明亮的彩带,这是它厚厚的大气层中一条条的云带。
有时我们能看到这颗行星的视面上,有一个红斑。300多年前,天文学家们就发现了它,称它为“大红斑”。“大红斑”是木星大气高层中一个猛烈的风暴,约有2.41万千米长,比地球大得多。我们还会看到木星并不是正圆的,而是中腰鼓起。它转动得非常快,每10小时转一周,木星上的一天只有10个小时!它厚厚的大气层顶端的云层,也随着以每小时约3.54万千米的速度转动,这样高的速度所产生的离心力,把云层拉成一条一条的,而使行星沿赤道隆起。
紧靠着木星近旁,我们可以看到几颗极小的“星星”,是它的卫星。木星有16颗卫星围绕它旋转,但用小望远镜只容易看到4颗。这是意大利著名科学家伽利略于1610年观测到的。如果我们连续几个晚上标下木星及其卫星的位置,我们很快就会像伽利略在近四个世纪以前所作的那样,发现这些卫星只需几天就环绕木星一周。
即使用很大的天文望远镜,天文学家们也只能像我们用小望远镜那样,仅仅看到木星大气的顶层,要对这颗奇特的行星进行更详尽的观察,则必须使用无人宇宙飞船。
第一艘飞近木星的宇宙飞船,是1972年发射的“先驱者10号”,接着是1973年发射的“先驱者11号”。这两艘飞船送回了木星的大量近距离照片和有关情况。1979年3月又有一艘飞船飞近木星,这就是1967年发射的“旅行者1号”,而“旅行者2号”也在1979年7月飞过这颗巨星。

“先驱者10号”宇宙飞船
直到现在,还没有宇宙飞行员冒险进入木星的大气层,但科学家们已推断出,隐藏在神秘的云层和风暴下面的,是一个什么样的世界。
在木星的天空下面,翻腾着一片片红色、棕色和黄色的漫无边际的云海;天空一片漆黑,上面点缀着成千上万颗闪烁着的星星,在木星上,太阳只是一颗非常明亮的星星,它比从地球上看去,要暗27倍,但如果不戴保护镜,它还是非常刺眼的。
如同在地球上一样,从木星上看到星星和太阳从东方升起,又从西方落下。但由于木星短促的昼夜只有10个小时,所以太阳在空中,也就只停留5个小时!
在木星的天空中,最有意思的物体,是它那16颗卫星。其中一些看上去只是星际中模糊的亮点,另一些则非常明亮,就像我们的月亮那样每月变换着月相。
最外层的伽利略卫星— 木卫四,由于被陨星撞击了约40亿年之久,它的表面布满了环形山。尽管它上面没有高山,但却有一个在太阳系中前所未见的奇观:一个巨大而平坦的圆形盆地,周围镶嵌着一圈圈同心的山脉,犹如一圈冻结了的海啸。表面现象并不一定完全不可相信,科学家们推测,由于一颗特大陨星的撞击,融化了木卫四表面的冰层,使水从撞击处向外扩展,而又很快重新冻结,因而形成了这些山脉。
相邻的木卫三,也像木卫四一样,至少有一半是由水和冰构成,它有着平坦的山脊和看上去像是地球上的断层线一样纵横交错的裂纹,这可能是由被某些地质学家称为“水震”的现象造成的。与木卫四相比,它的表面的陨星坑较少,其表层年代也只有木卫四的1/4,约为10亿年。鲜艳的、橘红色的木卫一几乎同木星一样非凡出众。它和月亮大小差不多,每天从空中掠过一次。它的表面布满了高原、高地、干燥的平原和断层线,还至少有一个可能仍然活动着的、直径为48千米的大型火山。

木卫三
可是木卫一的表面,却出乎意料的光滑,这说明它还很年轻(1千万年至1亿年)。它几乎没有陨星坑,没有这种痕迹的岩石体迄今只发现了一个。
迄今为止,天文学家才能看到最里层的木卫五,它仅仅是一个针尖大小的亮点。这颗微小的非伽利略木卫,原来是一个奇形怪状的长形天体,它高约128千米,长约219千米。
最令人震惊的是,在木卫五的轨道里面,存在着一股物质的溪流,这只能被解释为一个由大粒子所组成的光环。木星本身曾被“先驱者10号”和“先驱者11号”宇宙飞船考察过,但很容易理解为什么没有发现木星的光环,因为这个光环几乎薄得像“纸”,大约厚1000米,从地球上不可能看到它。
木星的上层大气,主要是由透明的氢气构成。因为木星引力比地球引力强2.5倍还多,如果在地球上的物体重是45千克,那么在木星大气层顶端就将是120千克。在明亮的、黄色的云层下面,是地狱般的高温和难以忍受的气压,人类决不可能在这种异常的条件下生存。
木星天空中呈现出蓝灰色,是一个由冻结了的氨结晶所构成的浓密的、黄白色的云海,那里的气温将近-93℃!离地平线不远的地方,可以看到一股巨大的、红色的飓风在翻腾,它比周围的云层高出近8千米,这个风暴就是木星的大红斑!
继续向木星云层的深处下降,气温不断升高。太阳微弱的光线透过云层,比地球上的任何黑暗更黑。但是这里—木星大气层的深处,并不是鸦雀无声的,一种低沉的、地球上听不到的隆隆声,从四面八方滚滚而来,这是旋转翻腾的风和云的吼声。
如果下降到1100千米,便会进入氢的王国。这里,极高的温度和压力把氢变成了液态的海洋!唯一的光亮是来自周围的巨大的闪电,它们使地球上的闪电,看上去只不过是大大的火花,而这里的雷鸣则是震耳欲聋。
这个氢的海洋有24900千米深,而且越深入就越黏稠越热,似乎是茫茫宇宙间可能存在的最为恐怖的情况。
在地球上,氢是一种清澈的气体,但在这里,在如此之高的温度和压力下,液态氢就压缩得像金属一样,能够传导热和电!
第六节 最美丽的行星—土星
1.土星概况
土星古称“镇星”或“填星”,因为土星公转周期大约为29.5年,而我国古代有28宿,土星几乎每年在一个宿中,有镇住或填满该宿的寓意,所以称为“镇星”或“填星”。土星是太阳系第二大行星,
由于快速自转而呈扁球形,直径11.93万千米,是地球的9.5倍。它与邻居木星十分相像,表面是液态氢和氦的海洋,上方覆盖着厚厚的云层,云层中含有大量的结晶氨。土星上狂风肆虐,沿东西方向的风速可超过每小时1600千米,土星上空的云层就是这些狂风造成的。从望远镜中看去,这些云和木星的云一样,形成相互平行的条纹,虽不如木星云带那样鲜艳,但是比木星云带规则得多。土星云带,以金黄色为主,其余是橘黄色、淡黄色等。土星的表面同木星一样,也是流体。

土 星
土星和木星一样,也属于巨行星。它的体积是地球的745倍,质量是5.69×1026千克,是地球的95.18倍。它的平均密度很小,是八大行星中密度最小的。如果把它放在水中,它会浮在水面上。土星的大半径和低密度,使其表面的重力加速度和地球表面相近。土星在冲日时的亮度,可与天空中最亮的恒星相比。
土星绕太阳公转的轨道是椭圆形,轨道半径约为14亿千米,公转的平均速度约为每秒9.64千米。它同太阳的距离在近日点时和在远日点时,相差约1 .5亿千米。土星也有四季,只是每一季的时间长达7年多。因为离太阳遥远,即使是夏季也极其寒冷。土星自转很快,但不同纬度自转的速度不一样,这种差别比木星还大。赤道上自转周期是10小时14分,纬度60度处则变成10小时40分。

光环围绕的土星
土星极地附近呈绿色,是整个表面最暗的区域。根据红外观测得知,云顶温度为-170℃,比木星低50℃,土星表面的温度约为-140℃。土星表面有时会出现白斑,最著名的白斑是1933年8月发现的,这块白斑出现在赤道区,呈蛋形,长度达到土星直径的1/5。以后这个白斑不断扩大,几乎蔓延到整个土星表面。

土 星
由于这颗行星表面温度较低,而逃逸速度又大(35.6千米/秒),使土星保留着几十亿年前它形成时所拥有的全部氢和氦。因此,科学家认为研究土星目前的成分,就等于研究太阳系形成初期的原始成分,这对了解太阳内部活动及其演化有很大的帮助。一般认为土星的化学组成像木星,不过氢的含量较少,土星上的甲烷含量比木星多,而氨的含量则比木星少。
1969年,一架飞机在地球大气高层,对土星的热辐射作了红外观测,发现它和木星一样,辐射出的能量是它从太阳接收到的能量的2倍。这表明,土星和木星一样有内在能源。后来“先驱者11号”的红外探测证实了这一点,测得土星发出的能量,是从太阳吸收到的2.5倍。
在太阳系的行星中,土星的光环最惹人注目,看上去就像戴着一顶漂亮的大草帽。观测表明,构成光环的物质是碎冰块、岩石块、尘埃、颗粒等,它们排列成一系列的圆圈,绕着土星旋转。它像木星一样,除了被色彩斑斓的云带所缭绕外,还被较多的卫星所拱卫。到1978年为止,已发现并证实的卫星有10个,以后又陆续有人提出新的发现。
土星运动迟缓,人们便将它看作掌握时间和命运的象征。罗马神话称之为第二代天神克洛诺斯,他是在推翻父亲之后登上天神宝座的。无论东方还是西方,都把土星与人类密切相关的农业联系在一起。它在天文学中表示的符号,像是一把主宰着农业的大镰刀。

2.土星的结构
土星的结构从内向外可分为核、壳、大气层三部分。土星的核是由岩石构成的,直径2万千米,占土星质量的10%~20%。核的外面是由5000千米厚的冰层组成的壳层。再外面是土星的大气层,大气层的主要成分是氢、氦,并含有甲烷,厚达8000千米。这些气体组成了彩色的云带,并且土星极区有极光,这让土星看上去分外美丽。1973年4月,美国发射的行星际探测器“先驱者11号”发现,土星的大气中,还有一个由电离氢构成的广延电离层,其高层温度约为977℃。土星表面有喷射流,速度最快时,竟高达每秒400米以上。
3.土星的家族
在宇宙飞船探测土星之前,人们知道土星有10颗卫星。1977年发现了土卫十一,1979年“先驱者1号”飞临土星时,探测到了第十二颗卫星。为了纪念它的功绩,起名为“先驱者号”。1980年10月 26日和11月10日,“旅行者1号”飞船在近距离考察土星时,又发现了5颗卫星。1981年8月25日,“旅行者2号”在距土星云层之上10.1万千米处掠过,考察了土星及其光环和9个卫星。这次飞掠土星时,又发现了6颗卫星。现已确认的土星卫星共23颗。距土星最近的是土卫十五,半径只有15千米,它与土星的距离为 13.7万千米,公转周期是0.601天。最远的是土卫九,它距土星中心为216个土星半径。从飞船发回的资料看,没有发现这些卫星上有火山活动的痕迹。
土星的卫星中,土卫六是天文学家关注的天体之一。自1655年荷兰天文学家惠更斯发现它以后,土卫六一直被认为是体积最大的卫星和太阳系中唯一有生命存在的卫星。但“旅行者1号”发回的数据却令人大失所望,它发现土卫六并不是太阳系中最大的卫星,并且也未发现它上面存在有任何生命的痕迹。但是,土卫六能向外发射电波,这使人感到迷惑。此外,土卫六轨道附近有一个氢云。

土星与土卫六
除土卫六外,天文学家从“旅行者号”飞船发回的资料发现,土星的其他卫星都比较小,在寒冷的表面上都有陨击的疤痕,像破碎了的蛋壳。土卫一表面上,有一个直径达128千米的陨石坑;土卫二有着荒凉的平原、陨石坑和断皱的山脊,它的不同区域代表着不同的历史时期;土卫三上有一个又深又宽,长约800千米的裂谷;土卫四表面有稀疏而明亮的条纹,它们都环绕着陨石坑。
知识小百科
拜访女巨神
1655年3月25日,荷兰天文学家惠更斯在用自制的3.7米长折射望远镜观测土星时,无意中发现了一颗土星的卫星,这颗卫星被命名为泰坦。泰坦是希腊神话中的女巨神—第二代天神克洛诺斯的妻子。它就是最受天文学家瞩目的土卫六,是被人类发现的第一颗土星卫星。
长期以来,土卫六一直被认为是太阳系卫星中体积最大、比水星还大的卫星之王。“旅行者号”探测器的一次近距离测量,在35千米处拍下5张高分辨率的照片。照片上土卫六展现出美丽的橘红色的星体,像一个熟透了的橘子。更重要的是,收到的数据资料,改写了土卫六原来5800千米的直径,实际直径应为5150千米,把“卫星之王”的桂冠迫不得已地转让给了木星的卫星木卫三,屈居第二。这并没有影响它的地位,科学家们一直对土卫六很感兴趣,原因在于它是卫星中唯一有大气存在的天体。大气的主要成分是氮,约占98%,甲烷占1%,还有少量的乙烷、乙烯及乙炔等气体,在大气中所占比例非常小,大气层厚度约为2700千米。土卫六的表面温度很低,在-181℃~-208℃,使之形成了美丽的液氮海洋。
虽然我们看不到土卫六的表面,但“旅行者号”探测器为我们提供的资料显示:土卫六是太阳系中的一个奇异世界,黑暗寒冷的表面,液氮的海洋,暗红的天空,偶尔洒下几点夹杂着碳氢化合物的氮雨。这些是人类了解生命起源和各种化学反应的理想之处。
从惠更斯发现土卫六以来,至今已有300多年的历史,土卫六仍是一个待解之谜。要想对土卫六有更深刻的认识,还需要人类不断地探索。

4.土星绚丽多彩的六角星云
美国国立光学天文台的科学家们,在研究“旅行者2号”发回的土星照片时,发现了一个奇怪的现象:在土星的北极上空,有个六角形的云团。这个云团以北极点为中心,并按照土星自转的速度旋转。土星北极的六角形云团,并不是“旅行者2 号”直接拍到,因为“旅行者2 号”并没有直接飞越土星北极上空。但它在土星周围绕行时,从各个角度拍下了土星照片。天文学家们把那些照片合成以后,才看清了土星北极上空的全貌,也才发现了那个六角形云团。土星北极上空六角形云团的出现,促使科学家们不得不重新认识土星。
5.美丽的土星光环
土星是太阳系中4个带环行星中最美丽的一个。土星环结构复杂,千姿百态,看上去像一张硕大无比的密纹唱片。土星环的宽度有好几万千米,但厚度只有20千米左右。所有的土星环,都是由大小不等的碎块颗粒所组成的,大的颗粒可达几十米,而小的颗粒不过几厘米或更小。它们外包一层冰壳,在太阳光的照射下,而形成了明亮光环。1675年,意大利天文学家卡西尼,在土星环上观测到一个缝,称为卡西尼缝,于是他把光环分为A、B两种。1837年,恩克又在A环上发现另一个较窄的缝,称为恩克缝。1850年人们又在B环内部发现暗淡的C环。到目前为止还发现有E、F、G等更加暗弱的环。
关于土星环的成因,有人解释说,它原来是土星的一颗卫星,由于当初离卫星太近,在潮汐的作用下被瓦解成一堆碎片,最后形成我们今天所看到的光环。科学家们倾向认为,土星环是由土星卫星同彗星或小行星相互碰撞而产生的碎块构成的。
第七节 躺着自转的行星—天王星
1.天王星概况

天王星
天王星,是距太阳从近到远的第七颗行星。在太阳系中,天王星体积排名第三,质量排名第四。它的名称来自古希腊神话中的天空之神乌拉诺斯,是克洛诺斯(农神)的父亲,宙斯(朱比特)的祖父。天王星是第一颗在现代发现的行星,虽然它的光度与五颗传统行星一样,亮度是肉眼可见的,但由于较为黯淡而未被古代的观测者发现。天王星是威廉·赫歇尔爵士发现的,他于1781年3月13日宣布了这一发现。在太阳系的现代史上,他首度扩展了已知的界限。天王星也是第一颗使用望远镜发现的行星。
天王星大气的主要成分是氢和氦,还包含较高比例的由水、氨、甲烷结成的“冰”与可以察觉到的碳氢化合物。它是太阳系内温度最低的行星,最低的温度只有49K,还有复合体组成的云层结构,水在最低的云层内,而甲烷组成最高处的云层。
天王星也有环系统、磁层和许多卫星。天王星的系统在行星中非常独特,因为它的自转轴斜向一边,几乎就躺在公转太阳的轨道平面上,因而南极和北极躺在其他行星的赤道位置上。从地球上看,天王星的环像是环绕着标靶的圆环,它的卫星则像环绕着钟的指针。1986年,来自“旅行者2号”的影像显示,天王星实际上是一颗平凡的行星,在可见光的影像中,没有像在其他巨大行星所拥有的云彩或风暴。然而,近几年,随着天王星接近昼夜平分点,地球上的观测者看见了天王星有季节的变化和渐增的天气活动。天王星的风速可以达到每秒250米。
2.天王星的发现与探测

天王星内部结构
天王星在被发现是行星之前,已经被观测了很多次,但都把它当作恒星看待。最早的纪录可以追溯至1690年,约翰·佛兰斯蒂德在星表中,将它编为金牛座34,并且至少观测了6次。法国天文学家在1750—1769年也至少观测了12次,包括一次连续四夜的观测。
1781年3月13日,威廉·赫歇尔在索美塞特巴恩镇新国王街19号(现在是赫歇尔天文博物馆)的庭院中观察到这颗行星,1781年4月26日,他在最早的报告中称它是彗星。赫歇尔用他自己设计的望远镜“对这颗恒星做了一系列视差的观察”。他在他的学报上记录着:“在与金牛座成90°的位置……有一个星云样的星或者是一颗彗星。”3月17日,他注记着:“我找到一颗彗星或星云状的星,并且由他的位置变化,发现是一颗彗星。”当他将发现提交给皇家学会时,虽然含蓄地认为比较像行星,但仍然声称是发现了彗星。
知识小百科
威廉·赫歇尔—天王星的发现者
赫歇尔因为他的发现,被通知成为皇家天文学家,并且语无伦次地在4月23日回复说:“我不知该如何称呼它,它在接近圆形的轨道上移动,很像一颗行星,而彗星是在很扁的椭圆轨道上移动。我也没有看见彗发或彗尾。”
当赫歇尔继续谨慎的以彗星描述他的新对象,其他的天文学家已经开始做不同的怀疑。苏联天文学家安德罗·约莱斯尔估计,它至太阳的距离是地球至太阳的18倍,而没有彗星曾在近日点4倍于地球至太阳距离之外,被观测到。柏林天文学家约翰·波得描述赫歇尔的发现,像是“在土星轨道之外的圆形轨道上移动的恒星,可以被视为迄今仍未知的像行星的天体”。波得断定,这个以圆轨道运行的天体,比彗星更像是一颗行星。
这个天体很快便被接受是一颗行星。在1783年,法国科学家拉普拉斯证实,赫歇尔发现的是一颗行星。赫歇尔本人也向皇家天文学会的主席约翰·班克斯承认这个事实:“经由欧洲最杰出的天文学家观察,显示这颗新的星星,我很荣誉的在1781年3月指认出的,是太阳系内主要的行星之一。”为此,威廉·赫歇尔被英国皇家学会授予柯普莱勋章。乔治三世依据他的成就,将他移居至温莎王室,让皇室的家族有机会使用他的望远镜观星。
3.天王星的轨道和自转
据科学测算,天王星每84个地球年环绕太阳公转一周,与太阳的平均距离大约30亿千米,阳光的强度只有地球的1/400。它的轨道元素在1783年首度被拉普拉斯计算出来,但随着时间的流逝,预测和观测的位置开始出现误差。1841年,约翰·柯西·亚当斯首先提出,误差也许可以归结于一颗还未被看见的行星的拉扯。1845年,勒维耶开始独立地进行天王星轨道的研究。1846年9月23日,迦雷在勒维耶预测位置的附近,发现了一颗新行星,随后被命名为海王星。
天王星内部的自转周期是17小时14分,在它上部的大气层朝自转的方向,可以体验到非常强的风。实际上,在有些纬度,比如从赤道到南极的2/3路径上,可以看见移动非常迅速的大气,只要14个小时就能完整地自转一周。

天王星的五颗大卫星
天王星的自转轴躺在轨道平面上,倾斜角高达98°,这使它的季节变化完全不同于其他的行星。其他行星的自转轴,相对于太阳系的轨道平面都是朝上的,天王星的转动则像倾倒而被辗压过去的球。当天王星在至日附近时,一个极点会持续地指向太阳,另一个极点则背向太阳。只有在赤道附近狭窄的区域内,可以体会到迅速的日夜交替。但太阳的位置非常低,犹如太阳在地球的极区。运行到轨道的另一侧时,换成轴的另一极指向太阳。每一个极都会有被太阳持续照射42 年的极昼,而在另外42年则处于极夜。在接近昼夜平分点时,太阳正对着天王星的赤道,天王星的日夜交替和其他的行星相似,2007年12月7日,天王星经过了日夜平分点。
这种轴的指向带来的一个结果是,在一年之中,天王星的极区得到来自太阳的能量多于赤道,不过天王星的赤道依然比极区热,导致这种结果的机制仍然未知。天王星异常的转轴倾斜原因也不知道,但是通常的猜想是,在太阳系形成的时候,一颗地球大小的原行星撞击到天王星,造成了指向的歪斜。
4.天王星的物理性质
据科学探测,天王星主要是由岩石与各种成分不同的水冰物质组成,组成的主要元素为氢,其次为氦。在许多方面,天王星的性质比较接近木星与土星的地核部分,却没有类木行星包围在外的巨大液态气体表面。天王星没有土星与木星那样的岩石内核,它的金属成分,是以一种比较平均的状态,分布在整个地壳之内。直接以肉眼观察,天王星的表面呈现洋蓝色,这是因为它的甲烷大气吸收了大部分的红色光谱。

天王星的光环
(1)天王星的内部结构
天王星的质量,大约是地球的14.5 倍,是类木行星中质量最小的。它的密度每立方厘米1.24克,直径大约是地球的4倍。天王星主要由各种各样挥发性物质组成,例如水、氨和甲烷等。天王星内部冰的总含量,还不能精确的知道,根据选择的模型不同,有不同的含量,但是都在地球质量的9.3~13.5倍。
天王星的标准模型结构,包括三个层面:在中心的岩石核,在中间的冰的地函,在外面的由氢/氦组成的外壳。核非常小,密度大约是每立方厘米9克,半径不到天王星的20%;地函则是个庞然大物,质量大约是地球的13.4 倍;最外层的大气层,相对不明确,大约占有剩余20%的半径,但质量大约只有地球的0.5 倍。在核和地函交界处的压力是800万帕和大约5000开的温度。冰的地函,实际上并不是由一般意义上所谓的冰组成,而是由水、氨和其他挥发性物质组成的热且稠密的流体。这些流体有高导电性,有时被称为水—氨的海洋。天王星和海王星的大块结构,与木星和土星相当不同,冰的成分超过气体,因此有理由将它们分开,另成一类为冰巨星。
上面所考虑的模型,或多或少都是标准的,但不是唯一的,其他的模型也能满足观测的结果。例如,如果大量的氢和岩石混合在地函中,则冰的总量就会减少,并且岩石和氢的总量相对就会提高。目前可利用的数据,还不足以让我们确认哪一种模型才是正确的。天王星内部的流体结构,意味着没有固体表面,气体的大气层是逐渐转变成内部的液体层内。但是,为便于扁球体的转动,在大气压力达到1巴之处,被定义和考虑为行星的表面时,它的赤道和极的半径分别是25559±4千米和24973±20千米。 这样的表面将作为此文中高度的零点。
(2)天王星的内热
天王星的内热,看上去明显比其他的类木行星低,在天文项目中,它是低热流量。目前,科学家仍不了解天王星内部的温度为何会如此低。从大小和成分方面来看,天王星和海王星像是双胞胎,但海王星放至太空中的热量是得自太阳的2.61倍,而天王星几乎没有多出来的热量放出。天王星在远红外的部分,释出的总能量是大气层吸收自太阳能量的1.06±0.08倍。事实上,天王星的热流量只有每平方米0.042±0.047瓦,远低于地球内的热流量每平方米0.075瓦。天王星对流层顶的温度最低温度记录只有49K,使天王星成为太阳系温度最低的行星,比海王星还要冷。

太阳的第七颗行星天王星
5.天王星上的海洋
根据“旅行者2号”的探测结果,科学家推测天王星上可能有一个深度达1万千米,温度高达6650℃,由水、硅、镁、含氮分子、碳氢化合物及离子化物质组成的液态海洋。由于天王星上巨大而沉重的大气压力,分子紧靠在一起,使得高温海洋未能沸腾、蒸发。反过来,由于海洋的高温,恰好阻挡了高压的大气将海洋压成固态。海洋从天王星高温的内核一直延伸到大气层的底部,覆盖整个天王星。必须强调的是,这种海洋与我们所理解的、地球上的海洋完全不同。然而,近年却有观点认为,天王星上不存在这个海洋。真相如何,有待进一步的观测,或是寄望美国国家航空航天局会落实初步构想中的“新视野号2号计划”,派出无人探测船再度拜访天王星。
6.天王星的大气层
虽然在天王星的内部,没有明确的固体表面,天王星最外面的气体包壳,也就是被称为大气层的部分,却很容易以遥传感量。遥传感量的能力,可以从1帕之处为起点向下深入至300千米,相当于100帕的大气压力和320开的温度。稀薄的晕,从大气压力1帕的表面向外延伸扩展至半径两倍之处。天王星的大气层,可以分为三层:对流层,从高度1300~50千米,大气压100~0.1帕;平流层(同温层),高度50~4000 千米,大气压力0.1~10 帕;增温层/晕,从4000 千米向上延伸至距离表面50000千米处。天王星没有中气层(散逸层)。

天王星
(1)天王星的成分
天王星大气层的成分和天王星整体的成分不同,主要是氢分子和氦。氦的摩尔分数,这是每摩尔中所含有的氦原子数量,是0.15±0.03;在对流层的上层,相当于0.26± 0.05质量百分比。这个数值很接近0.275±0.01的原恒星质量百分比。在天王星的大气层中,含量占第三位的是甲烷。甲烷在可见和近红外的吸收带,为天王星制造了明显的蓝绿或深蓝的颜色。在大气压力1.3帕的甲烷云顶之下,甲烷在大气层中的摩尔分数是2.3%,大约是太阳的20~30倍。混合的比率在大气层的上层,由于极端的低温,降低了饱和的水平并且造成多余的甲烷结冰。对低挥发性物质的丰富度,像是氨、水和硫化氢,在大气层深处的含量人们所知有限,但是大概也会高于太阳内的含量。除甲烷之外,在天王星的上层大气层中,可以追踪到各种各样微量的碳氢化合物。它们被认为是太阳的紫外线辐射,导致甲烷光解产生的,包括乙烷、乙炔、甲基乙炔、联乙炔。光谱也揭露了水蒸气的踪影,一氧化碳和二氧化碳在大气层的上层,但可能只是来自于彗星和其他外部天体的落尘。

天王星
(2)天王星的对流层
对流层是大气层最低和密度最高的部分,温度随着高度的增加而降低,温度从有名无实的底部大约320K降低至53 K,高度从300千米降低至50千米。但对流层顶实际的最低温度,在49~57K,依在行星上的高度来决定。对流层顶是行星的上升暖气流辐射远红外线最主要的区域,由此处测量到的有效温度是59.1±0.3K。
对流层应该还有高度复杂的云系结构,水云被假设在大气压力50~100帕,氨氢硫化物云在20~40帕,氨或氢硫化物云在3~10帕,最后是直接侦测到的甲烷云在1~2 帕。对流层是大气层内动态非常充分的部分,展现出强风、明亮的云彩和季节性的变化。
(3)上层大气层
天王星大气层的中层是平流层,此处的温度逐渐增加,从对流层顶的53K上升至增温层底的800~850K。平流层的加热,来自于甲烷和其他碳氢化合物吸收的太阳紫外线和红外线辐射,大气层的这种形式是甲烷的光解造成的。来自增温层的热,也许也值得注意。碳氢化合物相对来说,只是很窄的一层,高度在100~280千米,相对于气压是10~0.1微帕,温度在75~170K。含量最多的碳氢化合物是乙炔和乙烷,与甲烷和一氧化碳的混合比率相似。更重的碳氢化合物、二氧化碳和水蒸气,在混合的比率上还要低三个数量级。乙烷和乙炔在平流层内,温度和高度较低处与对流层顶,倾向于凝聚而形成数层阴霾的云层,那些也可能被视为出现在天王星上的云带。然而,碳氢化合物集中在天王星平流层阴霾之上的高度,比其他类木行星的高度要低,是值得注意的。
天王星大气层的最外层,是增温层或晕,有着均匀一致的温度,在800~850 K。目前科学家仍不了解是何种热源支撑着如此的高温,虽然低效率的冷却作用和平流层上层的碳氢化合物也能贡献一些能源,但即使是太阳的远紫外线和超紫外线辐射,或是极光活动都不足以提供所需的能量。此外,氢分子和增温层与晕,拥有大比例的自由氢原子,它们的低分子量和高温,可以解释为何晕可以从行星扩展至50000千米,是天王星半径的两倍远。这个延伸的晕,是天王星的一个独有的特点。它的作用,包括阻挠环绕天王星的小颗粒,导致一些天王星环中尘粒的耗损。天王星的增温层和平流层的上层,对应着天王星的电离层。观测显示,电离层占据2000~10000千米的高度。天王星电离层的密度比土星或海王星高,这可能肇因于碳氢化合物在平流层低处的集中。电离层是承受太阳紫外线辐射的主要区域,它的密度也依据太阳活动而改变。极光活动,不如木星和土星的明显和重大。

天王星
7.若隐若现的行星环
天王星有一个暗淡的行星环系统,由直径约10米的黑暗粒状物组成。它是继土星环之后在太阳系内发现的第二个环系统。目前已知天王星环有13个圆环,其中最明亮的是ε环。天王星环被认为是相当年轻的,在圆环周围的空隙和不透明部分的区别,暗示它们不是与天王星同时形成的,环中的物质可能来自被高速撞击或潮汐力粉碎的卫星。
1977年3月10日,在詹姆斯·艾略特、爱德华·顿汉姆、道格拉斯·明克使用柯伊伯机载天文台观测时发现环。这个发现很意外,他们原本的计划,是观测天王星掩蔽的SAO158687,以研究天王星的大气层。然而,当他们分析观测资料时,他们发现在行星掩蔽的前后,这颗行星都曾经短暂的消失了5次。他们认为,必须有个环系统围绕着行星才能解释。“旅行者2号”在1986年飞掠过天王星时,直接看见了这些环。“旅行者2号”也发现了两圈新的光环,使环的数量增加到7圈。
2005年12月,哈勃太空望远镜侦测到一对早先未曾发现的蓝色圆环。最外围的一圈与天王星的距离,比早先知道的环远了2倍。因此新发现的环,被称为环系统的外环,这使天王星环的数量增加到13圈。哈柏同时也发现了两颗新的小卫星,其中Mab还与最外面的环共享轨道。在2006年4月,凯克天文台公布的新环影像中,外环的一圈是蓝色的,另一圈则是红色的。
关于外环颜色是蓝色的一个假说是,它由来自Mab的细小冰微粒组成,因此能散射足够多的蓝光。天王星的内环看起来是灰色的。
8.天王星的磁场
在“旅行者2号”抵达之前,天王星的磁层从未被测量过,因此还很自然的保持着神秘。在1986年之前,因为天王星的自转轴躺在黄道上,天文学家盼望能根据太阳风测量到天王星的磁场。
航海家的观测显示,天王星的磁场非常奇特,一是它不在行星的几何中心,二是它相对于自转轴倾斜59°。事实上,磁极从行星的中心偏离往南极,达到行星半径的1/3。这异常的几何关系,导致一个非常不对称的磁层,在南半球的表面,磁场的强度低于0.1高斯,而北半球的强度高达1.1高斯;表面的平均强度是0.23高斯。与地球的磁场比较,两极的磁场强度大约相等,并且“磁赤道”大致上与物理上的赤道平行,天王星的偶极矩是地球的50倍。海王星也有一个相似的偏移和倾斜的磁场,因此有人认为这是冰巨星的共同特点。
一种假说认为,不同于类地行星和气体巨星的磁场,是由核心内部引发的,冰巨星的磁场是由相对于表面下某一深度的运动引起的,例如水—氨的海洋。尽管有这样奇特的准线,天王星的磁层在其他方面与一般行星相似:在它的前方,位于23个天王星半径之处,有弓形震波,磁层顶在18个天王星半径处,充分发展完整的磁尾和辐射带。综上所论,天王星的磁层结构,不同于木星,却和土星比较像。天王星的磁尾在天王星的后方,延伸至太空中远达数百万千米,并且因为行星的自转被扭曲而斜向一侧,像是拔瓶塞的长螺旋杆。
天王星的磁层,包含带电粒子:质子和电子,还有少量的H2+离子,未曾侦测到重离子。许多的这些微粒可能来自大气层热的晕内。离子和电子的能量,分别可以高达4百万和1.2百万电子伏特。在磁层内侧的低能量(低于100 电子伏特)离子的密度,受到天王星卫星强烈的影响,在卫星经过之后,磁层内会留下值得注意的空隙。微粒流量的强度,在10万年的天文学时间尺度下,足以造成卫星表面变暗或是太空风暴。这或许就是造成卫星表面和环均匀一致暗淡的原因。在天王星的两个磁极附近,有相对算是高度发达的极光,在磁极的附近,形成明亮的弧。但是,天王星的极光,对增温层的能量平衡,似乎是无足轻重的。
9.天王星的气候
据科学观测,与其他的气体巨星,甚至是与相似的海王星比较,天王星的大气层是非常平静的。当“旅行者2号”于1986年飞掠过天王星时,总共观察到了10个横跨整个行星的云带特征。有人提出解释,认为这种特征是天王星的内热低于其他巨大行星的结果。在天王星记录到的最低温度是49K,比海王星还要冷,使天王星成为太阳系温度最低的行星。

天王星
1986年,“旅行者2号”发现,可见的天王星南半球,可以细分成两个区域:明亮的极区和暗淡的赤道带状区。两个区的分界大约在纬度-45°的附近。一条跨越在-45°~-50°之间的狭窄带状物,是在行星表面能够看见的最亮的大特征,被称为南半球的“衣领”。极冠和衣领被认为是甲烷云密集的区域,位置在大气压力1.3~2帕的高度。很不幸的是,“旅行者2号”抵达时正是盛夏,观察不到北半球。不过,21世纪开始之际,北半球的“衣领”和极区,可以通过哈勃太空望远镜和凯克望远镜观测到。结果,天王星看起来是不对称的:靠近南极明亮,从南半球的“衣领”以北,都是一样的黑暗。天王星可以观察到的纬度结构,展现出许多条狭窄但色彩丰富的带状结构。
除了大规模的带状结构,“旅行者2号”观察到了10朵小块的亮云,多数都躺在“衣领”的北方数度。1986年看到的天王星,在其他的区域,都像是毫无生气的死寂行星。但是,20世纪90年代的观测显示出,亮云彩特征的数量有明显的增长,它们多数都出现在北半球,开始成为可以看见的区域。一般的解释认为,是明亮的云彩在行星黑暗的部分,比较容易被分辨出来,而在南半球则被明亮的“衣领”掩盖掉了。 然而,两个半球的云彩是有区别的,北半球的云彩较小、较尖锐和较明亮。它们看上去都躺在较高的高度,直到2004年南极区使用2.2微米观测到这些都是事实。这是对甲烷吸收带敏感的波段,而北半球的云彩都是用这种光谱的波段来观测的。云彩的生命期有着极大的差异,一些小的只有4小时,而南半球至少有一个,从“旅行者2号”飞掠过后,仍一直存在着。最近的观察也发现,虽然天王星的气候较为平静,但天王星的云彩有许多特性与海王星相同。但有一种特殊的影像,海王星上有很普通的大暗斑,2006年之前从未在天王星上观测到。

天王星
追踪这些有特征的云彩,可以测量出天王星对流层上方的风如何在极区咆哮。在赤道的风是退行的,意味着它们吹的方向与自转的方向相反。风速随着远离赤道的距离而增加,大约在纬度±20°静止不动,这儿也是对流层温度最低之处。再往极区移动,风向也转成与行星自转的方向一致,风速则持续增加,在纬度±60°处达到最大值,然后下降至极区减弱为0。在纬度-40°附近,事实上,在天王星北半球的风速是随着纬度一度一度地在缓缓递减,特别是在中纬度的±20°~40°的纬度上。目前还无法认定从1986年迄今,天王星的风速是否发生了改变,而且对较慢的子午圈风依然是一无所知。
10.天王星的卫星
天王星的卫星,目前已发现的有15颗。其中天卫一到天卫五,是在地面观测中发现的,另外10颗卫星是1986年“旅行者2号”宇宙飞船在探测天王星时发现的。天卫一到天卫五这5颗卫星,几乎都在接近天王星的赤道面上,绕天王星转动,它们都是逆行卫星。距离天王星最近的是天卫五,然后向外依次是天卫一、天卫二、天卫三和天卫四。其中,天卫三和天卫四较大,其余三颗都比较小,最小的天卫五直径为484千米。其余10颗卫星则更小,直径多在20~100千米,最大的一颗直径也只有160千米,被称为“1985UI”。

11.天王星的极光
天王星上,也有极光现象。1982年,一颗地球轨道卫星发现,天王星有一道明亮的紫外线辉光。当时有人提出,这个辉光可能不是受激电子,而是太阳紫外光激发的气辉光。后来,“旅行者2号”宇宙飞船在抵近天王星观测时,发现这个辉光是由紫外光和电子两者所引起的,被称为电辉光。木星和土星也有这种现象,但其过程不同。天王星虽也有极光,但从地球上观测,天王星的紫外辉光中约70%是电辉光,只有30%是气辉光。
12.天王星的光环
天王星也有光环,与土星光环一样,由许多冰块组成,但又薄、又窄、又暗,人的肉眼看不到,用天文望远镜也无法直接观测到。在发现天王星后的100年里,从未有人知道天王星光环的存在。直至1977年,天文学家利用天王星掩食恒星的机会,利用被掩食恒星的光度变化,才发现了天王星光环的存在。它的光环距离天王星约1.8万千米,位于一条7000千米宽的环带上。至今为止,已发现的天王星光环共有11条。
13.“旅行者2.”航向海王星时拍摄的天王星
1986年,NASA的“旅行者2号”拜访了天王星。这次的拜访是唯一的一次近距离的探测,并且目前也还没有新的探测计划。“旅行者2号”于1977年发射,在继续前往海王星的旅程之前,于1986年1月24日最接近天王星,距离近达8.15万千米。“旅行者2号”研究了天王星大气层的结构和化学组成,发现了10颗新卫星,它研究了天王星因为自转轴倾斜97.77°所造成的独特气候,并观察了天王星的环系统。它也研究了天王星的磁场:不规则的结构、倾斜的磁轴和如同拔塞螺丝般扭曲并斜向一侧的磁尾。它对最大的5颗卫星,做了首度的详细调查,并研究当时已知的9圈光环,也新发现了两道光环。
第八节 笔尖上发现的行星—海王星
1.海王星的概况
海王星是环绕太阳运行的第八颗行星,也是太阳系中第四大天体。海王星直径小于天王星,但质量比它大。

海王星
天王星被发现后,人们注意到它的轨道与根据牛顿理论所推知的并不一致。因此科学家们预测,存在着另一颗遥远的行星,影响着天王星的轨道。1846年9月23日,科学家们首次观察到海王星,它出现的地点非常靠近亚当斯和勒维耶根据所观察到的木星、土星和天王星的位置。谁先发现海王星和谁享有对此命名的权利曾引起国际性争论,然而亚当斯和勒维耶个人之间并未有明显的争论。现在将海王星的发现共同归功于他们二人。后来的观察显示,亚当斯和勒维耶计算出的轨道,与海王星真实的轨道偏差相当大。如果对海王星的搜寻早几年或晚几年进行的话,人们将无法在他们预测的位置或附近找到它。
1989年8月25日,“旅行者2号”探测器飞越海王星,这是人类首次用空间探测器探测海王星。它在距海王星4827千米的最近点与海王星相会,从而使人类第一次看清了远在距离地球45亿千米之外的海王星面貌。它发现了海王星的6颗新卫星,使其卫星总数增至8颗。其还首次发现海王星有5条光环,其中3条暗淡、2条明亮。从“旅行者2号”拍摄的6000多幅海王星照片中发现,海王星南极周围有两条宽约4345千米的巨大黑色风云带和一块有地球那么大面积的风暴区,它们形成了大黑斑。这块大黑斑沿中心轴向逆时针方向旋转,每转360°需10天。海王星也有磁场和辐射带,大部分地区有像地球南北极那样的极光。海王星的大气层动荡不定,大气中含有由冰冻甲烷构成的白云和大面积气旋,跟随在气旋后面的是时速为640千米的飓风。海王星上空有一层因阳光照射大气层中的甲烷而形成的烟雾。

海王星
“旅行者2号”还飞向海卫一进行考察,发现海卫一确是太阳系中唯一的一颗沿行星自转方向逆行的大卫星,也是太阳系中最冷的天体。它比原来想象的更亮、更冷、更小,表面温度为-240℃,部分地区被水冰和雪覆盖,时常下雪。上面有3座冰火山,曾喷出过冰冻的甲烷或氮冰微粒,喷射高度有时达32千米。海卫一可能存在液氮海洋和冰湖,到处都有断层、高山、峡谷和冰川,这表明海卫一上可能发生过类似的地震。海卫一有一层由氮气组成的稀薄大气层。
冥王星的轨道极其怪异,有时它会穿过海王星轨道。自1979年以来,海王星成为实际上是距太阳最远的行星,在1999年,冥王星才会再次成为最遥远的行星。
2.海王星的组成
据科学探测,海王星与天王星的成分很相似:各种各样的“冰”和含有15%的氢和少量氦的岩石;有明显的内部地质分层,但海王星很有可能拥有一个岩石质的小型地核(质量与地球相仿)。它的大气多半由氢气和氦气组成,还有少量甲烷。海王星的蓝色是大气中甲烷吸收了日光中的红光造成的。

海王星和海卫一
作为典型的气体行星,海王星上有着按带状分布的大风暴或旋风。海王星上的风暴是太阳系中最快的,时速达到2000千米。和土星、木星一样,海王星内部有热源—它辐射出的能量,是它吸收的太阳能的两倍多。

海王星和海卫一
在“旅行者2号”造访海王星的期间,行星上最明显的特征就属南半球的大黑斑。黑斑的大小约是木星大红斑的1/2,直径的大小与地球相似。海王星上的疾风以300米每秒的速度把大黑斑向西吹动。“旅行者2号”还在南半球发现一个较小的黑斑,它或许是一团从大气层低处上升的羽状物,但它真正的本质还是一个谜。
1994年,哈勃望远镜对海王星的观察显示出,大黑斑竟然消失了!它或许就这么消散了,或许暂时被大气层的其他部分所掩盖。几个月后,哈勃望远镜在海王星的北半球,发现了一个新的黑斑,这表明海王星的大气层变化频繁,也许是由于云的顶部和底部温度差异的细微变化引起的。
3.海王星卫星
据科学家们观测,海王星有9颗已知卫星:8颗小卫星和海卫一。其中海卫一是太阳系质量最大的卫星。
海卫一也叫特赖登,是一个处于太阳系边缘的令人吃惊的卫星。在海王星和它的卫星所处的离太阳48亿千米的没有太阳温暖刺激的地方,科学家们几乎不期望能找到有活动迹象的地方。然而,“特赖登”没有让科学家们失望,这个直径2720千米的粉红和灰白的世界,有变化多样的地形,有宽480亿千米冰封谷。整个半球看上去,被像哈密瓜外皮一样的地形所覆盖。它的形成原因仍然困惑着科学家们。

海卫一
4.神秘的未知领域
遥远的海王星,在地球上看去,常常隐身于宝瓶座星系不被人们发现。人们在发现天王星运动方式有点怪异之后,通过计算和推算才发现了它的存在。
海王星与太阳的平均距离为44.96亿千米,是地球到太阳距离的30倍。海王星接收到太阳的光和热,只有地球的19%,于是其表面覆盖着绵延几千千米厚的冰层,平均温度为-220℃;外表则围绕着浓密的大气,成分主要是氢、氦和甲烷;大气压力很大,约为地球大气压的100倍;海王星的直径4.95万千米,是地球的3.88倍;体积有57个地球那么大,质量是地球的17倍多,所以其密度也相当小,海王星以每秒5.43千米的速度,绕着太阳公转,公转一周需要花上164.8年,而自转一周只要24小时左右。尽管海王星是一个寒冷而荒凉的星球,不过科学家们推测它的内部有热源。
5.海王星的光环
海王星也有光环,只是它的光环非常微弱,难以辨认。1989年,“旅行者2号”宇宙飞船在飞近海王星时,发现海王星内外嵌套着5条光环。里面的3条比较模糊,可能是由卫星碎片构成的;外面的2条比较明亮,比里面的环完整。最外面的环有几段弧特别亮,经观察后发现,环中嵌有七八团冰块,最大的直径有10~20千米,其他的则是很小的冰晶和碎石。科学家认为,海王星的光环是卫星与小行星碰撞的古老遗迹。

海王星的光环
6. 海王星的大黑斑
在海王星的大气中,有3个显著的亮斑和2个暗斑,其中较大的暗斑称“大黑斑”。大黑斑位于海王星赤道以南,长约1.2万千米,宽8000千米。它与木星的大红斑在许多方面都非常相近,它实际上是一个大气旋。大黑斑沿逆时针方向自转,形状不断改变。它的转动周期为18小时,当经过7个周期时,大黑斑在经度方向开始延伸,并抛出一串暗斑向北扩展,然后拉长变薄。在大黑斑的南部纬度51°处是第二个黑斑,体积比大黑斑小,但颜色更黑,它的中心飘着一朵醒目的白云。
第九节 行星家族中的侏儒—小行星
1.小行星概况
小行星主要分布于火星和木星轨道之间,距离太阳2.2~3.2个天文单位的小行星带内,是围绕太阳旋转的数量众多的小天体。大多数小行星的形状不规则,只有少数较大的小行星呈球状。小行星的个头很小,直径一般不超过1000千米,总质量约2.1×1021千克,相当于地球质量的0.04%。小行星与九大行星一样,也自西向东绕太阳公转,公转轨道呈椭圆形;自转周期平均为11.47小时,自转轴的取向毫无规律。小行星的组成元素有碳、磷、氧、硅、铁、镍等,其表面温度很低,一般为-120℃。小行星靠反射太阳光发亮,亮度呈周期性变化。

小行星像行星一样绕着太阳运行,但是天体又比别的行星小得多,于是天文学家都把它们叫做小行星。在不到10年的短短时间里,天文学家就在同一个区域里发现了4颗小行星,引起了当时许多天文学家的兴趣,寻找小行星成了他们的一件大事。他们纷纷改进自己的观测仪器,把一台台天文望远镜指向天空,搜索其他小行星。果然,在以后的几十年时间里,小行星一个接一个地被发现。到了19世纪末,天文学家们发现的小行星已经有400多颗。

围绕死亡恒星的小行星“微尘”
由于观测小行星的技术不断提高,发现的小行星越来越多,发现小行星的速度也越来越快。到现在为止,用照相巡天观测的方法,已经发现了50万颗亮度很暗的小行星。这些小行星像一条带子一样分布在火星和木星轨道之间,天文学家们习惯把这个区域叫做小行星带。
2.小行星的编号和命名
按照国际上的规定,对新发现的小行星,在计算出它的运动轨道以后,还必须有两次以上在离地球最近的位置观测到它,才给它编号和命名。最先被发现的小行星—谷神星被编为第1号,智神星被编为第2号,其他小行星的编号也按照发现的先后次序来编号。现在已经被编号和命名的小行星,已经有5000多颗。
我国观测小行星的工作是从20世纪才开始的。1928年,我国的天文学家张钰哲,在美国叶凯士天文台,用60厘米的反射望远镜发现了一颗小行星。这是我国的天文工作者发现的第一颗小行星,这颗小行星后来就被命名为“中华”。新中国成立后,中国科学院紫金山天文台进行了大量的预测工作,先后发现了400多颗小行星,其中有54颗小行星已经正式编号,有41颗小行星已经正式命名。
从谷神星的发现到现在,经过了180多年。为了纪念在发现小行星方面最初作出贡献的皮亚齐和奥伯斯,国际上把第1000颗小行星命名为皮亚齐,而把第1002号小行星命名为奥伯斯。
(1)谷神星

谷神星
谷神星是1号小行星,也是最早发现的小行星,还是迄今为止所发现的最大和最重的小行星。1801年1月1日,意大利天文学家皮亚齐发现了它。当时被命名为克瑞斯(罗马神话中专司粮食的女神),中文译名是谷神星。谷神星直径约770千米,质量占所有小行星质量总和的1/2。轨道半长径是2.77个天文单位,公转周期是1681天,亮度是7.4等。谷神星属碳质小行星。
知识小百科
谷神星
谷神星是小行星主带中最大的天体,也是主带中唯一的矮行星。它的直径接近1000千米,因此自身的引力已足以使它成为球体。它在19世纪初被发现时,被认为是一颗行星。19世纪50年代,因为有更多的小天体被发现,它才重新被归为小行星。2006年,又再度重新归为矮行星。
(2)智神星
智神星是2号小行星,于1802年由德国天文学家奥伯斯发现。在罗马神话中,智神星被看作是智慧女神雅典娜。智神星的直径约490千米,体积与重量仅次于谷神星。它的轨道半长径是2.77个天文单位,公转周期是1686天,自转周期是9~12小时,亮度是8.0等。智神星不属于任何可分类的小行星。
(3)婚神星
婚神星是3号小行星,于1804年由德国天文学家哈丁发现。在古希腊神话中,婚神星被看作是宙斯的妻子赫拉。婚神星直径约247千米,质量0.2×1020千克。轨道半长径是2.67个天文单位,公转周期是1594天,自转周期是7小时13分,亮度是8.7等。
(4)灶神星
灶神星是4号小行星。1807年,德国天文学家奥伯斯发现了它。在古希腊神话中,灶神星被看作是掌管万民家事的宙斯姐姐维斯塔。灶神星直径约390千米,质量2.4×1020千克,轨道半长径为2.36个天文单位,公转周期是1325天,自转周期5小时20分31秒,亮度6.5等,是最亮的小行星,也是能用肉眼直接看到的唯一的一颗小行星。
(5)中华星
中华星是1125号小行星。1928年11月22日,由中国天文学家张钰哲在美国叶凯士天文台发现的。根据张钰哲的建议,命名为“中华星”。中华星的轨道半长径3.1465个天文单位,轨道偏心率0.2025,轨道倾角3.03°。
知识小百科
“中华”小行星的发现
1976年,美国哈佛大学天文台,把他们发现的第2051号小行星,定名叫“张”。这个“张”,就是指我国著名天文学家、紫金山天文台台长张钰哲。这是为了表达他们对在小行星研究中,作出了贡献的张钰哲先生的尊敬,也表达对中国人民的友好情谊。
张钰哲从自己拍下来的星空照片上,发现了1颗过去没有观测到的小星,这引起了他的注意。他又连续观测了半个月,证明这确实是1颗新发现的小行星。他把自己得出的结果写成报告,寄到美国行星中心站。不久,中心站回信告诉张钰哲,他的发现的确是1颗在这以前没有被发现的小行星,被编为第1125号小行星。按照惯例,这新发现的小行星由发现者给命名。作为一个中国人,张钰哲此刻的心情,充满了无比的欢乐和自豪。他决定,把这颗第1125号小行星取名叫“中华”,因为只有这两个字,才能恰当地表达他对自己祖国深厚的热爱。这时,张钰哲才只有26岁。
第十节 不速之客—彗星
1.彗星概况
彗星是太阳系大家庭中一个奇特的成员,它不仅外貌奇特,而且行踪“诡秘”。彗星拖着一条奇异的长尾巴,就好像是一把倒挂在天上的扫帚,我国古代人民形象地给它起了一个别名— 扫帚星。彗星的“彗”字,在古代就有“扫帚”的意思。古希腊人把彗星称为“发星”,认为彗星的尾巴是少女拖在脑后的美丽长发。

彗 星
彗星是太阳系中的一个普通成员,在太阳引力下绕着太阳运动。太阳系中所有天体的运动轨道都是一条圆锥曲线,彗星的运动轨道也是一条圆锥曲线。圆锥曲线包括圆、椭圆、抛物线、双曲线,不同的彗星运动轨道的形状也不相同。目前还未发现有圆形轨道的彗星。具有抛物线和双曲线形轨道的彗星,它们只接近太阳一次。当绕过太阳后,越跑越远,最后脱离太阳引力,离开太阳系,向遥远的宇宙太空飞去,并且永远不再归来。另外还有一些彗星,它们沿着椭圆形的轨道绕太阳旋转。尽管它们之间有的偏心率很大,会跑到离太阳很远的地方去,但是总有一天它们还会回来。这些沿着椭圆轨道运行的彗星,才是太阳系的正式成员,人们称它们为“周期彗星”。前面说的那些一去不复返的彗星,被称为“非周期彗星”,它只不过是太阳系的一位过客。


霍姆斯彗星
科学家们经过研究和分析,认为来自太阳系以外的彗星是极少数,绝大多数的彗星都是太阳系的成员。它们原来的运行轨道,差不多都是偏心率接近于1的椭圆,这些彗星都是在一个比较扁长的轨道上绕太阳运行。如果彗星只受到太阳引力的作用,那么它的速度和运行轨道就永远不会改变。在太阳的周围有8个大行星,它们的质量相当大,尤其是木星和土星。当彗星从这些大行星附近经过时,不能忽视它们对彗星的引力。这个引力会使彗星的运行速度改变,从而改变它的运行轨道。这种由大行星引力作用产生的改变,在天文学中叫做“摄动”。
大行星的摄动,可以使长周期彗星变为短周期彗星,也可以使短周期彗星变为长周期彗星,甚至变为非周期彗星。当摄动使彗星的速度变小时,就可以缩短其运行周期 ;当摄动使彗星的速度加快时,就会使运行周期增加;当摄动使彗星的速度增加得很大,使它的轨道变成抛物线形或双曲线形,就会使这颗彗星成为一颗非周期彗星。
彗星的外貌和亮度,随着它距离太阳的远近而产生明显的变化:当彗星离太阳很远的时候,它像一颗很暗的星星。当它逐渐地运动到太阳附近时,变得越来越亮,而且由于太阳风和太阳辐射压力,它产生一条拖在身后的尾巴。当它离太阳更近时,尾巴显著地变长变大,在近日点处,它的尾巴最长最大。彗星过近日点后,它的尾巴逐渐缩小,最后又像一颗暗暗的星星,慢慢地消失在人们的视野中,甚至连大望远镜也无法看到它们。

彗星的体积是太阳系中最大的,但是它的质量却并不大。彗星的质量都集中在彗核,那里的平均密度大约为每立方厘米1克。有些彗星的彗核密度,可能会大一些,但也有的彗核密度仅有每立方厘米0.01克,比空气的密度还要稀薄得多。可见彗星这个庞然大物,只是虚胖而已。彗发的体积大,质量小,它的密度比彗核的密度小。又长又宽的彗尾体积最大,质量最小,密度最小。彗尾的物质极为稀薄,那里的密度只有地面上空气的10亿亿分之一。当彗星掩恒星时,被掩星的星光,可以穿过彗发和彗尾,它们的光线一般不会减弱也不会发生偏折,只是看到星光发生闪烁而已。1910年,哈雷彗星的尾巴曾经“扫”过地球,当预测地球要穿过哈雷彗星的彗尾时,立刻引起了骚动,不少人惊恐不已,生怕地球在碰撞中毁灭。但是彗星物质太稀薄了,当地球从彗尾穿过时,地球上毫无异常现象。

哈雷彗星
过去的记载中曾记录下许多著名的大彗星,如哈雷彗星、恩克彗星、比拉彗星、多纳提彗星、科胡特克彗星等,其中哈雷彗星最为著名。哈雷彗星于1985~1986年回到地球和太阳附近。1986年2月9日,它通过近日点。20世纪80年代,美国与欧洲宇航局制定了一项联合探测彗星的计划,发射一颗探测彗星的航天器。这个探测器先以高速掠过哈雷彗星,然后再去访问一个年老的、近期内活动不大的典型彗星—坦普耳2彗星。探测器近距离探测彗星,并向地球发回大量的资料。这一计划大大地丰富了人们对于彗星这一奇异天体的认识。
彗星并不多见。据记载,人类有史以来仅观测到2000多次彗星,其中亮度超过金星的只有16次。按照通常的定义,亮度接近或超过亮行星的彗星,就是非常壮观的彗星,一般要平均20年左右才能出现1颗。实际上,彗星是非常多的,据天文学家估计不下1000亿颗。

恩克彗星

科胡特克彗星
知识小百科
彗星出现预示着人间有灾难吗?
彗里的形状很特别,像一把大扫帚。在科学不发达的古代,人们对这种出没无常、形状怪异的天体感到莫名的恐惧,常常把它和天灾人祸联系起来,认为它是灾祸的前兆。中国古书上曾称它为“妖星”、“扫帚星”。其实,彗星和地球一样,是太阳系的普通成员。许多彗星,都沿着扁长的轨道绕太阳运行,人们可以精确地预言它们露面的时间。彗里的出现,与天灾人祸毫无关系。
2.彗星的结构和形态
人们一般只能看到亮彗星的彗核、彗发和彗尾。20世纪70年代,天文学家通过高空火箭和人造卫星发现,彗发之外还有彗云,因它是由原子氢构成的,所以又叫氢云,是彗星的外大气层。
彗星中也有发育不全的,有的没有彗尾,如运行在火星和木星轨道之间的奥特姆彗星。有的不仅没有彗尾,甚至连彗发也没有,如运行在木星和土星轨道之间的施瓦斯曼—瓦赫曼彗星,不了解它的人很难认出它是一颗彗星。

彗 星
即使是同一颗彗星,在不同时期也是有差别的。当彗星离太阳很远时,只呈现一个云雾状的斑点,只有当彗星离太阳较近时,彗核中的尘埃和气体才逐渐蒸发形成彗发和彗尾。一旦远离太阳,彗发和彗尾又会消失。
彗头中央明亮的部分叫做亮度核或光度核。但它不是彗星的物理核心,即不是真正的彗核,真正的彗核位于亮度核的中央,直径只有几千米到几十千米。它是彗星的主体,大部分的彗星质量集中于此。
3.彗星的成分
彗星的成分,主要是一些相当于地球上的气态物质,如氨、甲烷、氰等气体,还有尘埃。不过这些物质在彗星中是固态的,像冰一样。此外,组成彗星的物质还有由水结成的冰。在冰状物质中,还分布着细小的岩石碎块。
知识小百科
彗星为什么能发光?
彗星本身不发光。它发光的原因有两个:一是受太阳风能量冲击而产生荧光现象,二是受太阳照射而反光。当彗星离太阳越近时,它感受太阳的光和热就越强,因此所呈现的光度也就越强,其彗尾也拉得越长。当彗星远离太阳,回到深邃寒冷的太空时,它的光度与彗尾也就逐渐降低消失了。
4.彗星观测的历史记录
我国有悠久的彗星观测历史,我国对彗星的观测和研究可以追溯到4000多年前,拥有世界上最早、最丰富的彗星记录。甲骨卜辞中就有“彗异”的记载,史料中关于观测到彗星的记录截至清末不下250多次。特别值得一提的是长沙马王堆汉墓中出土的帛书彗星图,绘有29幅形态各异的彗星,反映出远在战国末期的秦汉之际,人们已经十分细致地区分了彗星的形态。他们在肉眼观测的条件下,甚至在彗头中,看出了彗核和彗发。对彗尾的区分更细,有细而直的,有弯曲的,也有粗宽彗尾的。由此可见,从古至今发现和观测彗星,一直是人们极感兴趣的观测活动。
望远镜发明以后,发现新彗星成为许多业余天文学家努力追求的目标之一。他们转动着望远镜漫天寻觅,希望发现一颗新彗星的幸运降临到自己头上。对预报回归的彗星,他们也渴望最先看到它的身影。这种辛勤的搜寻有时能受到很大鼓舞,在第一次预报哈雷彗星将于1758年再次回归时,很多人翘首以望。一个德国农民巴里茨歇,因最先看到它的回归而记入史册。在众多的搜寻彗星的观测者中,有不少佼佼者,他们善于捕捉目标。例如,澳大利亚有一个名叫布雷德费的业余天文学家,他被誉称为“彗星猎手”。1972年—1980年,他一个人就发现过11颗彗星。
发现新彗星非常激动人心,观测他人已经发现的彗星也饶有兴味。它们不但形态各异,就是同一颗彗星再次回归,也会与上一次来临时有明显的甚至很大的变化。观测彗星的有机分子越来越受到重视,人们希望通过观测彗星,对星际空间的物理状态和太阳系的演化有更多的了解。

光芒四射的彗星
彗星最初出现在天幕上,是繁星中一个不太亮的模糊的小斑点,它相对于周围的恒星有缓慢的移动。搜寻就以这种模糊的略亮于背景的斑块为对象。一旦找到这样的天体,还不能说已经发现了彗星,因为这个斑块也有可能是星云或者星团。要剔除它是星团星云,一看星图上这一位置,是否有已知的星团或星云;二看斑块有无相对于恒星的运动。如果相隔几分钟或十几分钟就看出它有明显的移动,它就不是星团或者星云,而很可能是彗星。相对于恒星有运动的天体,还有小行星、人造地球卫星、流星或者火流星。暗的小行星一般不可能在较小的望远镜里为肉眼所见;人造地球卫星的移动,要比彗星快得多;流星或火流星稍纵即逝,亮度变化迅速,和彗星有明显的区别。
知识小百科
彗星的家在哪里?
形状奇特、出没无常的彗星,究竟源于何处?1796年,法国天文学家拉普拉斯在他的《宇宙体系论》著作中,提出了彗星起源于彗星云说。他认为,彗星是由太阳系外星际云物质形成的。遥远的星际云物质,由于受到邻近恒星的影响,再加上行星与太阳引力的拉扯,最终被吸进太阳系而形成彗星。
1950年,荷兰天文学家奥尔特,通过精密的观测研究,进一步补充完善了拉普拉斯的理论。奥尔特统计过彗星的轨道,他认为在离太阳22.5万亿千米处,有一个好像壳一般包围着太阳系的彗星云,里面有大约千亿个彗星的核心。这些彗星的核心受到其他星的引力扰动,便会脱离彗星云,有些会飞向太阳,让我们看到,有些则消失于星际空间。奥尔特所说的彗星云,后来被人们称为奥尔特云。他的彗星理论已得到人们的公认。
5.周期彗星和非周期彗星
周期彗星,是在椭圆轨道上周期地绕太阳公转运行的彗星。周期彗星,又可分为短周期彗星(周期小于200年)和长周期彗星。前者的轨道倾角不大,多为顺行,即绕太阳公转的方向,与行星绕太阳公转的方向相同。后者的轨道平面,在太阳系空间内是随机分布的,顺行的与逆行的各占一半。周期彗星绕太阳运行的轨道各不相同,它们绕太阳运行一周的时间也各不相同。如著名的恩克彗星绕太阳一周的时间为3年多,是迄今为止发现的周期最短的彗星之一;而1996年出现的百武彗星,周期则长达2万年。
非周期彗星,是在双曲线或抛物线轨道上,绕太阳运行的彗星。它们在经过近日点后,就逐渐脱离太阳的引力,跑到宇宙空间便一去不复返了。目前轨道已测算出的彗星当中,大多数是非周期彗星。彗星在经过行星附近时,会受行星的摄动而改变轨道。如果将观测到的双曲线和抛物线的轨道往前类推,大多数非周期彗星的轨道都曾是偏心率较大的椭圆,这说明可能只有很少的彗星,是来自太阳系以外的。

彗星表面
知识小百科
百年一遇的哈雷彗星
哈雷彗星,是第一颗被预言回归的周期彗星。1705年,英国天文学家哈雷根据1531年、1607年、1682年出现的彗星的轨道相似性,推测它们是同一颗彗星,并预言这颗彗星将于1758—1759年再度回归。1759年3月13日,这颗大彗星果然如约而至。但哈雷已于1742年离开人世,没能亲眼看到他所预言的现实。后人为纪念哈雷的贡献,就把这颗彗星命名为哈雷彗星。哈雷彗星的慧核长约16千米,宽8千米,厚7.5千米,质量为500亿~1300亿吨。它的轨道是一个很扁的椭圆,近日距为0.59天文单位,远日距达35.31天文单位。哈雷彗星的寿命约为几十万年,回归周期是76年,大多数人一生能见到它一次。哈雷彗星最近一次出现的时间是1986年,下次将出现于2062年。
第十一节 被“贬”的矮行星—冥王星
1.冥王星概况
2006年8月24日,在布拉格举行的第26届国际天文联会上通过了第5号决议,将冥王星划为“矮行星”。2009年3月9日,美国伊利诺伊州决定恢复冥王星的行星资格。不管冥王星应该被划分为哪种星体,我们还是要对它进行介绍。

冥王星
在古罗马神话中,冥王星被看作是地狱之神普鲁托。冥王星与太阳的平均距离为59亿千米。它的公转周期为248年,自转周期为6.387天。冥王星的质量是地球质量的0.0024倍,比月球小;直径为2400千米,也比月球的直径小;密度为每立方厘米1.8~2.1克。冥王星的表面温度为零下240℃,表面覆盖着一层甲烷冰。当冥王星运行到近日点附近时,甲烷冰升华,形成暂时存在的冥王星大气。冥王星大气非常稀薄,与天王星和海王星的成分相似。当冥王星渐渐远离太阳时,这层薄薄的气体,便逐渐在地表凝固。
2.冥王星的卫星

冥王星只有一颗卫星,是1978年7月由美国人斯蒂发现的。这颗卫星名为查龙,查龙是希腊神话中,专在冥海上度亡灵的艄公。冥王星卫星在距冥王星1.91万千米的轨道上运行,是一颗天然同步卫星。它的公转周期与冥王星的自转周期正好相等。冥王星卫星的成分不清楚,据推测可能和土星的冰卫星的成分类似,表面可能覆盖着冰。冥王星卫星的直径为1300千米,与冥王星的直径相差太小,这在太阳系中绝无仅有。因此,有的天文学家猜想,它们不是行星和卫星的关系,而是一对“双行星”。

冥王星
3.谜团最多的行星
冥王星,是目前太阳系九大行星中,面目最为模糊的一颗。它发现的时间晚,而且距离我们非常遥远,体积又很小,因此人类对它的了解很有限,至今还没有宇宙飞船飞到冥王星附近做过考察。在现今各种天文书刊中给出的行星参数表上,冥王星这一栏留下的空白最多,即使被列出数据,有不少也被打上问号。冥王星的直径和质量是行星中最小的,反照率为50%~60%,这同外行星的几颗冻结的大卫星很相似。冥王星究竟是行星还是卫星,或者是一颗大的小行星?这些问题一直是科学家们在致力探索的热门课题。相信不久的将来,随着探测技术的发展,冥王星的庐山真面目将会展现在世人面前。
图片授权
东方IC网
富尔特数位影像股份有限公司
北京全景视觉网络科技有限公司
林静文化摄影部
敬 启
本书图片的编选,参阅了一些网站和公共图库。由于联系上的困难,我们与部分入选图片的作者未能取得联系,谨致深深的歉意。敬请图片原作者见到本书后,及时与我们联系,以便我们按国家有关规定支付稿酬并赠送样书。联系邮箱:zct06@163.com