发现细菌世界的利器

普通光学显微镜
自从列文虎克发明了显微镜之后,人们利用它来观察细小的生物,从而也知道了许许多多、各种各样的细菌。即使到了现在,显微镜依然是人类发现细菌的主要工具。
一般来说,显微镜可以分成光学显微镜、电子显微镜和扫描隧道显微镜几大类。
(1)普通光学显微镜的构造主要分为3部分:机械部分、照明部分和光学部分。机械部分包括镜座、镜柱、镜臂、镜筒、物镜转换器(旋转器)、镜台(载物台)和调节器等几部分,
显微镜的镜座是它的底座,用以支持整个镜体。镜柱是镜座上面直立的部分,用以连接镜座和镜臂。镜臂一端连于镜柱,一端连于镜筒,是取放显微镜时手握部位。镜筒连在镜臂的前上方,镜筒上端装有目镜,下端装有物镜转换器。物镜转换器接于棱镜壳的下方,可自由转动,盘上有3~4个圆孔,是安装物镜部位,转动转换器可以调换不同倍数的物镜,当听到碰叩声时,才可进行观察,此时物镜光轴恰好对准通光孔中心,光路接通。转换物镜后,不允许使用粗调节器,只能用细调节器,使像清晰。镜台在镜筒下方,形状有方、圆两种,用以放置玻片标本;中央有一通光孔,我们所用的显微镜其镜台上装有玻片标本推进器(推片器),推进器左侧有弹簧夹,用以夹持玻片标本,镜台下有推进器调节轮,可使玻片标本作左右、前后方向的移动。调节器是装在镜柱上的大小两种螺旋,调节时使镜台作上下方向的移动。
照明部分装在镜台下方,包括反光镜和集光器。
反光镜装在镜座上面,可向任意方向转动,它有平、凹两面,其作用是将光源光线反射到聚光器上,再经通光孔照明标本。凹面镜聚光作用强,适于光线较弱的时候使用;平面镜聚光作用弱,适于光线较强时使用。
集光器(聚光器)位于镜台下方的集光器架上,由聚光镜和光圈组成,其作用是把光线集中到所要观察的标本上。聚光镜由一片或数片透镜组成,起汇聚光线的作用,加强对标本的照明,并使光线射入物镜内,镜柱旁有一调节螺旋,转动它可升降聚光器,以调节视野中光亮度的强弱。光圈在聚光镜下方,由十几张金属薄片组成,其外侧伸出一柄,推动它可调节其开孔的大小,以调节光量。
显微镜的光学部分包括目镜和物镜。

显微镜的目镜
目镜装在镜筒的上端,通常备有2~3个,上面刻有5×、10×或15×符号以表示其放大倍数,一般装的是10×的目镜。物镜装在镜筒下端的旋转器上,一般有3~4个物镜,其中最短的刻有“10×”符号的为低倍镜,较长的刻有“40×”符号的为高倍镜,最长的刻有“100×”符号的为油镜,此外,在高倍镜和油镜上还常加有一圈不同颜色的线,以示区别。显微镜的放大倍数是物镜的放大倍数与目镜的放大倍数的乘积。
目镜和物镜都是凸透镜,焦距不同。物镜相当于投影仪的镜头,物体通过物镜成倒立、放大的实像。目镜相当于普通的放大镜,该实像又通过目镜成正立、放大的虚像。反光镜用来反射,照亮被观察的物体。反光镜一般有两个反射面:一个是平面,在光线较强时使用;一个是凹面,在光线较弱时使用。
除这种普通显微镜外,光学显微镜还有其他几种:
暗视场显微镜——这种显微镜使用特殊的暗视场聚光镜使照明光线偏移而不进入物镜,只有样品的散射光进入物镜。因而在暗背景上得到亮的像,与暗视场照明相反,照明的光线直接到达成像平面的,称明视场照明。暗视场显微镜主要用于观察结构和折射率变化有关的物体,如硅藻、放射虫类、细菌等具有规律结构的单细胞生物以及细胞中的线状结构(如鞭毛、纤维等)。用暗视场显微镜还可观察到物镜分辨极限以下的质点,但不适用于观察染色的标本。
相差显微镜——这种显微镜利用物体不同结构成分之间的折射率和厚度的差别,把通过物体不同部分的光程差转变为振幅(光强度)的差别,经过带有环状光圈的聚光镜和带有相位片的相差物镜实现观测的显微镜。主要用于观察活细胞或不染色的组织切片,有时也可用于观察缺少反差的染色样品。
干涉显微镜——这种显微镜采用通过样品内和样品外的相干光束产生干涉的方法,把相位差(或光程差)转换为振幅(光强度)变化的显微镜,根据干涉图形可分辨出样品中的结构,并可测定样品中一定区域内的相位差或光程差。由于分开光束的方法不同,有不同类型的干涉显微镜和用于测定非均匀样品的积分显微镜干涉仪。干涉显微镜主要用于测定活的或未固定的相互分散的细胞或组织的厚度或折射率。
荧光显微镜——这种显微镜用激发光照射样品,根据样品产生的荧光进行观察的显微镜。生物学、医学中应用的荧光有自发荧光、诱发荧光、荧光着色、免疫荧光等。荧光显微镜激发光照射的方式,有透射和落射两种。
(2)电子显微镜由镜筒、真空系统和电源柜三部分组成。镜筒主要有电子枪、电子透镜、样品架、荧光屏和照相机构等部件,这些部件通常是自上而下地装配成一个柱体;真空系统由机械真空泵、扩散泵和真空阀门等构成,并通过抽气管道与镜筒相连接,电源柜由高压发生器、励磁电流稳流器和各种调节控制单元组成。

电子显微镜
电子透镜是电子显微镜镜筒中最重要的部件,它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与玻璃凸透镜使光束聚焦的作用相似,所以称为电子透镜。现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦。
电子枪是由钨丝热阴极、栅极和阴极构成的部件。它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于1/10000。
电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。
电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示。20世纪70年代,透射式电子显微镜的分辨率约为0.3纳米(人眼的分辨本领约为0.1毫米)。现在电子显微镜最大放大倍率超过300万倍,而光学显微镜的最大放大倍率约为2000倍,所以通过电子显微镜就能直接观察到某些重金属的原子和晶体中排列整齐的原子点阵。
1931年,德国的诺尔和鲁斯卡,用冷阴极放电电子源和3个电子透镜改装了一台高压示波器,并获得了放大十几倍的图像,发明的是透射电镜,证实了电子显微镜放大成像的可能性。1932年,经过鲁斯卡的改进,电子显微镜的分辨能力达到了50纳米,约为当时光学显微镜分辨本领的10倍,突破了光学显微镜分辨极限,于是电子显微镜开始受到人们的重视。
到了20世纪40年代,美国的希尔用消像散器补偿电子透镜的旋转不对称性,使电子显微镜的分辨本领有了新的突破,逐步达到了现代水平。在中国,1958年研制成功透射式电子显微镜,其分辨本领为3纳米,1979年又制成分辨本领为0.3纳米的大型电子显微镜。
电子显微镜的分辨本领虽已远胜于光学显微镜,但电子显微镜因需在真空条件下工作,所以很难观察活的生物,而且电子束的照射也会使生物样品受到辐照损伤。其他的问题,如电子枪亮度和电子透镜质量的提高等问题也有待继续研究。
(3)扫描隧道显微镜也称为“扫描穿隧式显微镜”、“隧道扫描显微镜”,是一种利用量子理论中的隧道效应探测物质表面结构的仪器。它于1981年由格尔德·宾宁及海因里希·罗雷尔在IBM位于瑞士苏黎世的苏黎世实验室发明,两位发明者因此与恩斯特·鲁斯卡分享了1986年诺贝尔物理学奖。
扫描隧道显微镜作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外,扫描隧道显微镜在低温下可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。
扫描隧道显微镜使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物化性质,在表面科学、材料科学、生命科学等领域的研究中有着重大的意义和广泛的应用前景,被国际科学界公认为20世纪80年代世界十大科技成就之一。