原子结构的认识历程
19世纪90年代,人们对物质结构的认识已突破原子的藩篱,开始钻入原子的内部,去看个究竟。
在19世纪下半叶,人们发现在真空管的阴极发出一种射线,所以就称它为阴极射线。经过几十年的研究,人们对阴极射线的认识大大加深了,尽管对这种射线的认识尚不能统一。1895年,刚当上维尔茨堡大学校长的德国科学家伦琴(1845—1923年)对阴极射线的穿透能力进行研究。他注意到阴极射线管内产生的绿色荧光。他猜想是阴极射线撞击管内残留的气体引起的,或撞击玻璃引起的。为此有必要深入研究。

伦琴
为了防止管外射线对阴极射线的影响,伦琴用黑纸将阴极射线管包起来。晚上,伦琴依然做实验,他偶然地发现阴极射线管下方的荧光屏上发出了荧光。这是怎么回事呢?阴极射线是不能穿过玻璃管壁的。他将手伸到荧光屏前,这确实吓了他一大跳,在荧光屏上隐隐现出了自己手的骨骼影子。
接着,伦琴将书册、铝片、木板、砝码盒放在阴极射线管与屏之间,这些东西都成了半透明的东西。
由于阴极射线在空气中只能行进2.5厘米,可是将线平放在离射线管2米远时,这些现象仍可以发生。伦琴知道这是一种新发现的重要现象。他决定在弄清这现象之前不向外界透露。一连几个星期他都泡在实验室里,人们“怀疑”,伦琴是不是“疯”了?妻子询问时,伦琴也只是说,“我正在做一些人们说‘伦琴疯了’的事情。”
伦琴还利用这种新射线进行拍照。这时,伦琴的夫人到实验室来,伦琴让她把手放在平台上,而后接通阴极射线管,拍下了她的手骨。照片很清楚,连手指上戴的戒指都清晰可见。妻子问伦琴,是什么射线具有如此大的魔力?伦琴回答是“无名射线”。妻子随口说道:“又是一个X!”伦琴觉得这是一个很好的名称,是的!“那就叫它X射线吧!”
1896年1月2日夜,维也纳《新自由报》即将付印时,编辑部收到了一份急件。拆开一看,里面是一只手骸骨的照片,只见骸骨的无名指上还有一只订婚戒指。次日,报上登载了独家新闻“物理学教授伦琴的新发现”,并附有那张照片。读者看了这条新闻,无不为之惊叹。
X射线的发现使伦琴获得1901年度诺贝尔物理奖,然而皇室要授予他贵族的头衔时,伦琴却拒绝了,并且放弃了为X射线申请专利,无私地将它奉献给全人类。
X射线的发现大大刺激了人们探寻未知世界的决心。同时这一发现还为人们打开原子世界的大门找到了一把钥匙。
X射线发现之后,许多科学家都投身到X射线的研究。仅1896年,全世界出版关于X射线的书就达50种,发表科学论文达1000多篇。在这些研究中,法国科学家又作出了新的发现。
1896年的元旦刚过,著名法国科学家彭加勒(1854—1912年)收到伦琴寄来有关X射线发现的论文和手骨照片。彭加勒在法国科学院介绍了伦琴的新发现,同时,还提出了一个问题:是否发荧光的物质在阳光作用下发出X射线呢?这当然引起了A.H.贝克勒尔(1852—1908年)的注意,他向彭加勒问道,X射线是从管子的哪一部分发出的?彭加勒答道:似乎是从管子中阴极对面有荧光的地方发出的。贝克勒尔认为,X射线应该是从荧光物质发出的,为此他马上着手研究荧光物质。
研究荧光物质是贝克勒尔家族的强项。贝克勒尔的祖父A.C.贝克勒尔(1798—1878年)和父亲A.E.贝克勒尔(1820—1891年)都是法国科学院院士,他们对荧光现象进行了长期的研究,其中A.E.贝克勒尔的研究最为突出。A.H.贝克勒尔对荧光也很有研究。
开始,对荧光物质发射X射线的研究并不顺利。当贝克勒尔有所动摇时,他看到彭加勒发表的一篇有关X射线的文章。彭加勒认为:“是否所有荧光足够强的物质都既发出荧光又发射X射线,而与产生荧光的原因无关。”彭加勒的新看法再次激发了贝克勒尔的决心。
到2月下旬,贝克勒尔采用一种铀盐做实验。我们可能都有这样的经验,在荧光物质发光之前,通常要将荧光物质放在阳光下晒一晒,用灯光照一下也可以,贝克勒尔正是这样做的。他将铀盐与用黑纸包好的底片放在一起,再将它们拿到阳光下晒上几个小时。
当他冲洗底片,果然发现底片曝光了。贝克勒尔向法国科学院报告了这一结果。
为了重复实验结果,贝克勒尔要重作实验。不巧的是,几天的天气都不好,无法进行实验。这时他将铀核和用黑纸包好后的底片一同放入了抽屉。在科学院例会的前一天,贝克勒尔为实验作准备,他取出一张底片冲洗,看看底片的质量。冲洗之后,贝克勒尔原以为即便有曝光现象,底片上的影像也是很淡的。可是结果却大不一样,底片不但曝光了,而且铀盐的黑色影像非常明显。很清楚,使底片曝光的原因是由于铀盐发射一种神秘的射线造成的。人们为此命名为“贝克勒尔射线”。
铀盐辐射的新射线类似X射线。尽管贝克勒尔的新发现并未引起轰动效应,却引起了居里夫人(1867—1934年)的注意。她把这种性质命名为“放射性”。当时居里夫人开始作博士论文,她的丈夫皮埃尔·居里(1867—1906年)建议她选择放射性的题目。当然,这样的题目是有风险的,为此,皮埃尔·居里放下了手中的研究工作,与夫人一起在这片陌生的园地进行“拓荒”。此后,居里夫人发现钍也具有放射性,并将具有放射性质的铀和钍之类的元素称作“放射性元素”。

皮埃尔·居里

居里夫人
不久,居里夫人得到一批沥青。这种沥青是奥地利的一家公司提取铀之后渣滓,居里夫人发现沥青还具有放射性,并比铀和钍的放射性更强。居里夫妇分离出一种新元素,他们命名为钋,这是为了纪念居里夫人的祖国波兰。进一步的研究,他们发现沥青中还有新的元素。新元素与钋不同,原因是钋与铋的化学性质相近,而新元素与钡的化学性质相近。进而居里夫妇推断,沥青中含有新元素,他们命名为镭。
也许人们并不怀疑物理学家的测量,但受“眼见为实”的影响,像化学家那样分离出新的放射性元素也是必要的。虽然居里夫妇认为有必要为抱怀疑态度的人分离出新物质,但困难非常大。除了缺乏经费的支持,他们连一间像样的实验室都没有。
他们的实验室是一间破木棚,夫妇二人在屋里支起一口大锅,实验器具摆在破桌子上。他们不管严冬酷暑,不怕烟气熏呛,夜以继日地进行分离工作。抱着怀疑态度的人讥讽这对夫妇,他们准是疯了。
居里夫妇不管别人怎么看,他们以百折不挠的精神克服了一个又一个的困难,最终从几吨矿渣中分离出0.12克氯化镭,并且确定镭的原子量为225,测得镭的放射性比铀强10万倍以上。3年后,居里夫人又提炼出纯镭物质。他们发现镭能自发地释放能量,1小时可释放567焦耳,1千克镭释放的能量是1千克煤释放的能量的40万倍。这说明镭原子内部蕴藏着巨大的能量,而且镭是可以分割和变化的。新的发现为人们打开原子世界的又一扇大门,并且为原子攻坚战揭开了序幕。