Ⅰ 篇章翻译
Seeking Sustainability: Israel’s Evolving Water Management Strategy
原文
The major focus in Israeli water policy is and has always been expanding supply.Israel’s sole natural freshwater lake,Kinneret (also called the Sea of Galilee or Lake Tiberias),holds roughly one-third of the country’s replenishable water supply.Along with the mountain aquifer system,which provides an additional 20%,it lies in a transboundary watershed that is still the subject of international dispute.Nonetheless,even before a final allocation deal is brokered,annual water availability is less than 250 m3 per person (250,000 liters).The internationally recognized Falkenmark indicator sets 1,000 m3 per person as a minimum annual level below which countries experience water stress; hence,present supplies place Israel at 50% of the annual per capita “absolute scarcity” level of 500 m3.
The principal national investments in increasing water supply have involved four initiatives: (i) integrated management of Lake Kinneret and groundwater aquifers,which feed into an integrated national water grid; (ii) water harvesting via a network of rain-fed reservoirs;(iii) wastewater treatment and reuse for irrigation; and (iv) desalination of seawater and brackish groundwater.
Water Transport
Massive water transport projects have greatly expanded irrigation and domestic supply in arid regions from California to Libya.However,the associated water quality problems and mining of nonrenewable aquifers can lead to a steady decline in available water resources.Israel’s adaptive experience in this context is instructive.
Beginning in 1964,water has been conveyed from Israel’s relatively wet northern Galilee(precipitation up to 700 mm/year) to depleted central aquifers and to the arid southlands(precipitation 20 to 200 mm/year) via a “National Water Carrier”.Although this undertaking led to a large increase in cultivated land and harvests in the country’s semiarid regions,it also exacerbated salinity problems and,to a lesser extent,raised turbidity levels in water.
The water originating in Lake Kinneret was relatively salty,with average chloride concentrations reaching 390 mg/liter.Diversion of saline streams that fed Lake Kinneret to the lower Jordan River during the 1970s reduced concentrations to between 220 and 270 mg/liter.Nonetheless,water transport still contributes an estimated 170,000 metric tons of chlorides to the soils and groundwater in the center of the country.Present efforts focus on conscientious management of the surrounding watershed,further reduction of Kinneret salinity levels,and dilution of National Water Carrier flow with low-salt,desalinized waters.Some experts and environmentalists argue that the long-term salinization damage—along with the steady desiccation of the Dead Sea,deprived of the Jordan River water—justifies the decommissioning of the National Water Carrier.
At the same time,the suspended solid levels in the water supply,arising from natural turbidity in Lake Kinneret,have raised aesthetic and health concerns.A new system of sand filtration and treatment for the reservoirs of the National Water Carrier will begin operating in autumn 2006 to control turbidity and also to increase pH levels,thereby reducing the corrosivity of the water and minimizing chemical reactions with other water sources.Although this upgrade was delayed for some time because of its expense,an internal cost-benefit analysis showed that the investment was easily justified.
Water Harvesting and Reservoirs
Water supplies in Israel have been augmented by an aggressive program of collecting rainwater,spearheaded by the Jewish National Fund (JNF),a public-interest corporation.Starting in the 1980s,a network of 178 reservoirs was established across the country’s rain gradient,with most located in semiarid and hyper arid regions.The system currently collects 125 million m3/year, which constitutes 7% of the total water in Israel’s system,collectively capable of irrigating 300 million m2 of farmland.
The first wave of reservoirs relied on damming and impounding floodwaters,with the primary objective of replenishing groundwater.Beyond the reduced evaporation,the filtration associated with percolation through underlying soils enhances water quality.(However,pressure from farmers to control this stored water has often resulted in direct connection of the reservoirs to irrigation systems,so that these water quality improvements frequently are not realized.) Reservoirs can also bring the added benefits of fish farming,recreation,and swimming.Most of the recently constructed reservoirs hold treated wastewater,stored before agricultural use during the summer and autumn dry seasons.With the anticipated increase in overall water supply due to desalination technologies (see below),the need for reservoirs to store the resulting effluents will grow,especially during the rainy winter season when irrigation demand is low.
Although reservoirs can expand water supplies in arid regions,the creation of this harvesting infrastructure requires capital that is often unavailable at the local level.Depending on size and underlying soil composition,reservoirs with a capacity of 0.5 to 2 million m3 take between 1 and 2 years to build and cost $1 million to $5 million.Once built,however,reservoirs serve to empower the local agricultural communities that operate them and would otherwise remain highly reliant on the country’s centralized water bureaucracy.Communities can determine irrigation rates and storage regimes during the dry seasons.Water quality monitoring is a critical operational component in efforts to mitigate the risk of high concentrations of phosphates,phenols,nitrates,boron,and pesticides found in agricultural discharges and to control salinity in wastewater reservoirs.
Wastewater Reuse
In 1953 Israel drafted the world’s first set of standards for wastewater reuse,and effluent recycling emerged as a central element of Israeli domestic water policy.At present,91% of all municipal sewage in Israel is treated,73% of which is recycled [versus 2.5% in the United States],contributing roughly one-fifth of Israel’s total supply.Typically,the effluents reaching farm operations come from nearby cities,with the exception of Tel Aviv’s metropolitan plant,which transports roughly one-quarter of the country’s sewage (130 million m3/year) 100 km southward to the Negev desert.Treatment is based on an activated sludge process that incorporates additional nitrogen removal.After treatment,the water is piped to spreading bases where it is injected into the ground for recharge of a regional aquifer.Here the water undergoes additional filtering and seasonal storage before it is pumped for irrigation.(1,037 words)
生词
replenishable adj.可补给的;可更新的
aquifer n. 蓄水层,含水层
watershed n.分水岭,分水线
broker v.安排,协商
initiative n.倡议
grid n.网格;栅格;网络
desalination n.脱盐,除盐
brackish adj.含盐的
depleted adj.枯竭的
exacerbate v.加重,恶化
turbidity n.混浊
chloride n.氯化物
conscientious adj.认真的
dilution n.稀释
desiccation n.干燥;变旱
decommission n.关闭,废弃
corrosivity n.腐蚀性
augment n.增加
spearhead n.当……的先;牵头
public-interest adj.公益的
gradient n.梯度
impound v.蓄水
underlying soil n.底层土壤
bureaucracy n.官僚;机构
phosphates n.磷酸盐
phenol n.石碳酸
nitrates n.硝酸盐
boron n.硼
activated sludge process n.(废水处理)活性污泥法
nitrogen n.氮
注释
1.Sea of Galilee:加利利海。以色列最大的淡水湖,在历史上曾有不少名称,最早名基尼烈湖,新约时代称革尼撒勒湖或提比哩亚湖。
2.Falkenmark indicator:法尔肯马克水分胁迫指标。国际上对缺水国家的标准是依据瑞典水文学家法尔肯马克所下的定义:如果一个国家所拥有的可更新的淡水供应量在每人每年1 700立方米以下,那么这个国家就会定期或经常处于少水的状况,被定义为水资源紧迫;如果每人每年水供应量在1 000立方米以下,那就会感到水紧缺,被定义为水资源缺乏。
翻译解析
1.【原文】Along with the mountain aquifer system,which provides an additional 20%,it lies in a transboundary watershed that is still the subject of international dispute.
【译文】另外,以色列的山地蓄水系统供给了20%的用水。这两大水源都位于跨国界的分水岭上,该分水岭目前仍是国际争端问题。
【解析】利用词性转换法,把原文中的additional译为副词放于句首,“另外……”。采取分译法,将“along with”置后与第二句一起译,译为“这两大水源都……”;最后的定语从句“that is still the subject of international dispute”,单独成句,即“该分水岭目前仍是国际争端问题”。
2.【原文】hence,present supplies place Israel at 50% of the annual per capita “absolute scarcity” level of 500 m3 .
【译文】水供应“绝对稀缺”国家的标准为年人均供水量500 m3,也就是说,目前以色列的年人均供水量仅为这一标准的50%。
【解析】原文中有两个“of”名词所有格形式,若按原文顺序都译成“的”,译文便显得累赘,也不符合汉语表达,因此可以先将后面的“‘absolute scarcity’level”(“绝对稀缺”国家的标准)是什么译出,再译前面,将以色列的水源与这一标准相对比,说明以色列用水的现状。
3.【原文】water harvesting via a network of rain-fed reservoirs.
【译文】通过水库网络承接收集降水。
【解析】采取词性转换法,将“rain-fed”译为动词“承接”。
4.【原文】adaptive experience
【译文】灵活的处理方式
【解析】词义选择。如果把“adaptive”译为“适合的,适应的”,不符合汉语表达,译为“灵活的”更为贴切;“experience”(经验),其实就是以色列在水资源方面的处理方式,因此可译为“处理方式”。
5.【原文】National Water Carrier
【译文】国家输水工程
【解析】专有名词的译法。National Water Carrier 是二十世纪五十年代,以色列建立起的输水工程。
6.【原文】Nonetheless,water transport still contributes an estimated 170,000 metric tons of chlorides to the soils and groundwater in the center of the country.
【译文】然而,据估计仍有17万公吨的氯化物在输水时留在了以色列中部土壤及地下水中。
【解析】采取词性转换法,将“estimated”转化为副词放于句首,译为“据估计……”;“contribute to”(促成,造就),表因果关系,可译为“……在输水中留在了……”。
7.【原文】Some experts and environmentalists argue that the long-term salinization damage—along with the steady desiccation of the Dead Sea,deprived of the Jordan River water—justifies the decommissioning of the National Water Carrier.
【译文】有些专家及环保人士主张废止国家输水工程,因为该工程会造成长期的盐碱侵蚀,此外没有了约旦河水的注入,死海也会逐渐枯竭。
【解析】翻译此句的关键是弄清句子间的逻辑关系。“justify”(证明……是正当/有理的),表明前后是因果关系,而前面的原因又很长,所以可以先译结果再译原因,即“有些专家及环保人士主张废止国家输水工程,因为……”;“along with”(和……一起),说明“along with”后面的内容是第二个原因,可译为“此外……也会……”;“deprived of”用动词的过去分词表被动,即“被剥夺了……”,可译为“没有了……”。
8.【原文】At the same time,the suspended solid levels in the water supply,arising from natural turbidity in Lake Kinneret,have raised aesthetic and health concerns.
【译文】同时,基尼烈湖本身就很浑浊,供水中含有许多悬浮固体,不仅不雅观,还对健康有害。
【解析】词义的选择。若将“suspended solid level”译为“悬浮固体水平”,不符合汉语表达,可译为“含有许多悬浮固体”;“natural”(自然的,天生的),意即湖水本身就很浑浊;“aesthetic and health concerns”是抽象的概念,可以将抽象的概念具体化,译为“不仅不雅观,还对健康有害”。
9.【原文】Water supplies in Israel have been augmented by an aggressive program of collecting rainwater,spearheaded by the Jewish National Fund (JNF) ,a public-interest corporation.
【译文】由公益组织犹太民族基金会牵头,以色列积极开展了一项收集雨水的项目,增加了其供水量。
【解析】分析句子结构:整个句子是因果关系,“by”后面的原因有很多的限定成分,可以先译出,而把结果置后。词义的选择:“aggressive”有很多意思,此处应选取其“积极的”之意,译为“积极开展……”;“spearhead”(做什么的先锋),可译为“由……牵头”;“corporation”(公司,社团),在此可译为“组织”。
10.【原文】Starting in the 1980s,a network of 178 reservoirs was established across the country’s rain gradient,with most located in semiarid and hyper arid region.
【译文】从二十世纪八十年代开始,在全国不同雨梯度的地区共建了178个水库,形成了一个水库网,大部分都建在半干旱和超干旱地区。
【解析】“a network of 178 reservoirs was established”可分开来译,将“reservoir”译两次,先译出建了多少个水库,再说这些水库形成了一个水库网,即“建了178个水库,形成了一个水库网”;“rain gradient”(雨梯度),“across the country’s rain gradient”可采取增译法,译为“在全国不同雨梯度的地区”;“with”引导的非谓语成分做伴随状语,翻译时可单独成句,“大部分都建在半干旱和超干旱地区”。
11.【原文】With the anticipated increase in overall water supply due to desalination technologies (see below),the need for reservoirs to store the resulting effluents will grow,especially during the rainy winter season when irrigation demand is low.
【译文】预计总供水量会因脱盐技术(见下)的发展而增加,所以需要更多的水库来储存处理过的水,尤其是在雨水多、灌溉需求少的冬季。
【解析】采取词义转化法,将“anticipated”译为“预计……”,引出后面的句子;“with”引导伴随状语与主句有因果关系,翻译时应译出,译为“所以需要……”;“resulting effluent”指用脱盐技术处理后产生的水,译为“处理过的水”;“rainy winter season when irrigation demand is low”中可将“winter season”的两个定语“rainy”及定语从句“when irrigation demand is low”一块译出,即“雨水多、灌溉需求少的冬季”。
12.【原文】Once built,however,reservoirs serve to empower the local agricultural communities that operate them and would otherwise remain highly reliant on the country’s centralized water bureaucracy.
【译文】若没有水库,这些地区便仍会高度依赖于中央的水资源机构,然而一旦建成,当地的农业区便可用水库灌溉。
【解析】句子结构调整:“reservoirs serve to empower the local agricultural communities that operate them”一句中,可根据汉语习惯调整句子结构,将使用者置前,被使用者置后,“reservoirs serve to empower”与“operate them”在意义上又可合并,译为“用水库灌溉”,因此整句的译文为“当地的农业区便可用水库灌溉”。词义选择:“otherwise”(否则),可译为“若没有水库”;“bureaucracy”意为“官僚”,但这样译不符合汉语表达,译为“机构”更合适。
13.【原文】Here the water undergoes additional filtering and seasonal storage before it is pumped for irrigation.
【译文】在这里水经过再次过滤,雨季存储下来,之后便可抽取用于灌溉。
【解析】采取进行词性转换:将“additional”转换为副词,译为“再次……”,将“filtering”转换为动词,译为“进行过滤”。词义选择:“seasonal storage”(季节性储存),根据语境可译为“雨季存储下来”;“before”虽为“之前”之意,但此处将“before”后面的内容放在后面译更符合汉语表达,因此可译为“之后便可……”;“for”表目的,译为“用于”。
参考译文
追求可持续性:以色列的水资源管理策略
以色列水利政策的重点是扩大供给,而且向来如此。该国唯一的天然淡水湖基尼烈湖(又名加利利海或提比哩亚湖)储蓄了全国约三分之一的可补给供水。另外,以色列的山地蓄水系统供给了 20%的用水。这两大水源都位于跨国界的分水岭上,该分水岭目前仍是国际争端问题。尽管如此,即使是在最终的水资源分配比例协商好以前,以色列每年人均可供水量也不到250m³(即25万公升)。国际公认的法尔肯马克水分胁迫指标设定的最低标准为年人均1 000 m³,低于这一标准的国家会面临用水压力。水供应“绝对稀缺”国家的标准为年人均供水量500 m³,也就是说,目前以色列的年人均供水量仅为这一标准的50%。
以色列用于增加供水的投资主要涉及四个方案:1.将基尼烈湖的管理与地下含水层的管理结合起来,把它们整合到全国的水资源网络中;2.通过水库网络承接收集降水;3.废水处理和灌溉再用;4.海水与含盐地下水的脱盐处理。
输水
从美国的加利福尼亚到北非的利比亚,浩大的输水工程已经极大地增加了干燥地区的灌溉和住宅供水。然而,相关的水质问题以及不可再生的含水层的开采问题却可能会导致现有水资源的逐步减少。在这方面,以色列灵活的处理方式就很有启发性了。
从1964年开始,以色列便通过“国家输水工程”把水从相对湿润的北加利利(年降水量达700毫米)输送到中部枯竭的含水层及干旱的南部地区(年降水量20~200毫米)。尽管此项工程大大增加了以色列半干旱地区的耕地面积,提高了产量,但同时也加重了土地盐碱化,而且在一定程度上增加了水的浑浊度。
源自基尼烈湖的水含盐量相对较高,氯化物的平均含量达到了390毫克/公升。二十世纪七十年代,注入基尼烈湖的咸水溪流改道到约旦河下游,从而将氯化物含量降到220~270毫克/公升。然而,据估计仍有17万公吨的氯化物在输水时留在了以色列中部土壤及地下水中。如今对其处理主要采取以下措施:认真管理“输水工程”周边的分水岭,进一步减少基尼烈湖含盐量,用低盐、脱盐水稀释国家输水工程中的水流。有些专家及环保人士主张废止国家输水工程,因为该工程会造成长期的盐碱侵蚀,此外没有了约旦河水的注入,死海也会逐渐枯竭。
同时,基尼烈湖本身就很浑浊,供水中含有许多悬浮固体,不仅不雅观,还对健康有害。2006年秋将启用一套新体系,过滤和处理国家输水工程水库中的沙子,从而控制水的浑浊度,提高水的PH值,以此降低水的腐蚀性,尽可能减少其与其他水资源的化学反应。尽管这种改进措施因经费问题推迟了一段时间,但之前做的一次内部成本-效益分析的结果显示这项投资的价值很容易便可被证明。
降水收集与水库
由公益组织犹太民族基金会牵头,以色列积极开展了一项收集雨水的项目,增加了其供水量。从二十世纪八十年代开始,在全国不同雨梯度地区共建了178个水库,形成了一个水库网,大部分都建在半干旱和超干旱地区。这个系统目前每年收集的降水达1.25亿立方米,占以色列总供水量的7%,总共能灌溉3亿立方米的农田。
第一批水库主要用于拦水蓄洪,主要目标是补充地下水。除了减少蒸发之外,经过底层土壤的浸透过滤,水质也得到了改善。(然而,迫于农民要求控制这部分蓄水的压力,水库经常和灌溉系统直接相连,所以这些改进水质的措施常常无法实行。)水库还可以带来一些额外的好处,如养鱼、娱乐、游泳。最近建成的水库,大部分都储存处理过的废水,以备夏秋旱季农业生产之需。预计总供水量会因脱盐技术的发展而增加,所以需要更多的水库来储存处理过的水,尤其是在雨水多但灌溉需求少的冬季。
虽然水库可增加干旱地区供水,但这种降水收集系统的基础设施的建设需要大量资金,地方上常常没有足够的财力解决。兴建一个容量为50~200万立方米的水库要花1~2年的时间,耗资100~500万美元,需要的具体时间和资金要由水库的规模及底层土壤成分而定。若没有水库,这些地区便仍会高度依赖于中央的水资源机构,然而一旦建成,当地的农业区便可用水库灌溉。当地的农业区可决定旱季时的灌溉率及蓄水机制。要减轻农业排放物中磷酸盐、石碳酸、硝酸盐、硼及农药浓度过高造成的风险,控制废水水库中的含盐量,水质监控是关键一步。
废水再用
1953年,以色列起草了世界上首套污水再利用标准,自此废水循环利用便成了以色列国内水资源政策的核心内容。目前,以色列91%的城市污水都经过了处理,其中73%得到了循环利用 (相比之下,美国只有2.5%的废水得以循环利用),约占以色列总供水量的五分之一。通常农业生产中使用的废水来自附近的城市,但特拉维夫的城市污水处理厂是个例外。这个污水处理厂处理以色列约四分之一的污水(每年1.3亿立方米),然后将处理过的水从这里向南输送到100公里以外的内盖夫沙漠。污水处理基于活性污泥法,可除去多余的氮。污水经处理后便用管道输送到各处的基地,在那里将水灌输到土地中,补给当地的含水层。在这里水经过再次过滤,雨季存储下来,之后便可抽取用于灌溉。