1
基于MATLAB的数字图像处理研究
1.7.5.1 5.5.1 阈值分割

5.5.1 阈值分割

阈值分割算法是并行区域分割算法中具有代表性的一类非常重要的分割算法。以一定的图像模型为依托,通过取阈值后得到的图像,各个区域可以分离开。最常用的图像模型是假设图由具有单峰灰度分布的目标和背景组成。直接的阈值分割一般不能适用于复杂景物的正确分割,如自然场景,因为复杂景物的图像,有的区域很难判断究竟是前景还是背景。不过,阈值分割在处理前景和背景有很强的对比的图像时特别有用,此时需要的计算复杂度小。当物体的灰度级比较集中时,简单的设置灰度级阈值提取物体是一个有效的办法。

阈值方法分为全局阈值和动态阈值两种。如果分割过程中对图像上每个像素所使用的阈值都相等,则为全局阈值方法;如果每个像素所使用的阈值可能不同,则为局部阈值方法。最佳全局阈值的确定的常用方法一般有下面几种:试验法,直方图法,最小误差法(这种方法是假设背景和前景的灰度分布都是正态分布的)。

当光照不均匀、有突发噪声,或者背景灰度变化比较大时,整幅图像分割将没有合适的单一门限,因为单一的阈值不能兼顾图像各个像素的实际情况。这时,可对图像按照坐标分块,对每一块分别选一阈值进行分割,这种与坐标相关的阈值称为动态阈值方法,也称为自适应阈值方法。这类方法的时间和空间复杂度比较大,但是抗噪声能力比较强,对采用全局阈值不容易分割的图像有较好的效果。自适应阈值选取的比较简单的方法时对每一个像素确定以它为中心的一个邻域窗口,计算窗口内像素的最大值和最小值,然后取它们的均值作为阈值。对图像分块后的每一个子块可以采用直方图分析,如果某个子块内有目标和背景,则直方图呈双峰。如果块内只有目标或背景,则直方图没有双峰,可根据邻域各块分割得到的参数插值进行分割。实际的动态阈值分割完全可以根据图像的实际性质,对每个像素设定阈值,但这个过程要考虑到实际的要求和计算的复杂度问题。