植物克隆技术
植物的无性繁殖在农业上早已广泛采用,甚至有一些植物本身就能通过地下茎或地下根来繁殖新个体,“无心插柳柳成荫”便是一个例证。但人工的植物克隆过程却不这么简单。我们可通过植物组织培养进行无性繁殖。
所谓植物组织培养就是在无菌条件下利用人工培养基对植物体的某一部分(包括原生质体、细胞、组织和器官)进行培养。根据所培养的植物材料不同,组织培养可分为5种类型,即愈伤组织培养、悬浮细胞培养、器官培养、茎尖分生组织培养和原生质体培养。通过植物组织培养进行的无性繁殖在作物脱毒和快速繁殖上都有着广泛的应用。回顾其发展历程,是在无数科学家的不懈努力之下,方使这项技术趋于完善,趋于成熟。
无论植物还是动物,都是由细胞构成的,细胞是生物体的基本结构单位和功能单位,如果具有有机体一样的条件时,每个细胞应该可以独立生活和发展。
在施莱登和施旺新发展起来的细胞学说的推动下,德国著名植物生理学家哈布兰特提出了高等植物的器官和组织可以不断分割,直到分为单个细胞的观点。他认为植物细胞具有全能性,就是说,任何具有完整细胞核的植物细胞,都拥有形成一个完整植株所必须的全部遗传信息。为了论证这一观点,他在无菌条件下培养高等植物的单个离体细胞,但没有一个细胞在培养中发生分裂。哈布兰特实验失败是必然的,因为当时对离体细胞培养条件的认识还非常有限。1904年,德国植物胚胎学家汉宁用萝卜和辣根的胚进行培养,长成了小植株,首次获得胚培养成功。后来其他学者进行了一些探索性实验研究,直到20世纪30年代才出现突破性进展。

植物组织培养
到了20世纪30年代中期,植物组织培养领域出现了两个重要发现,一是认识到B族维生素对植物生长具有重要意义,二是发现了生长素是一种天然的生长调节物质。导致这两个发现的主要是怀特和高斯雷特的实验。1934年,怀特由番茄根建立了第一个活跃生长的无性系,使根的离体培养首次获得真正的成功。起初,他在实验中使用包含无机盐、酵母浸出液和蔗糖的培养基,后来他用3种B族维生素(吡哆醇、硫胺素和烟酸)取代酵母浸出液获得成功。与此同时,高斯雷特在山毛柳和黑杨等形成层组织的培养中发现,虽然在含有葡萄糖和盐酸半胱氨酸的knop溶液中,这些组织也可以不断增殖几个月,但只在培养基中加入了B族维生素和生长素以后,山毛柳形成组织的生长才能显著增加。
在20世纪40年代和50年代,由于另外一类植物激素——细胞分裂素的发现,使得组织培养的技术更加完备。1948年,在烟草茎切段和髓培养研究中,发现腺嘌呤或腺苷可以解除生长素对芽的抑制作用,并使烟草茎切段诱导形成芽,从而发现了腺嘌呤与生长素的比例是控制芽和根分化的决定因素之一。当这一比例高时,有利于形成芽;比例低时,有利于形成根。这一惊人的发现,成为植物组织培养中控制器官形成的激素模式,为植物组织培养作出了杰出贡献。随后,在寻找促进植物细胞分裂的物质中,1956年发现了激动素,它和腺嘌呤有同样作用,可以促进芽的形成,而且效果更好。从那以后,都采用激动素或其类似物,如6-苄基腺嘌呤玉米素、Zip等代替腺嘌呤,从而把腺嘌呤/生长素公式改为根芽分化与激动素/生长素的比例有关。后来证明,激素可调控器官发生的概念对于多数物种都可适用,只是由于在不同组织中这些激素的内源水平不同,因而对于某一具体的形态发生过程来说,它们所要求的外源激素水平也会有所不同。1956年,在进行胡萝卜根愈伤组织的液体培养研究,发现其游离组织和小细胞团的悬浮液可长期继代培养,并于1958年以胡萝卜根的悬浮胞诱导分化成完整的小植株,从而证实了半个多世纪前哈布兰特提出的植物细胞全能性假说,这一成果大大加速了植物组织培养研究的发展。1965年从烟草的单个细胞发育成了一个完整的植株,进一步证实了植物细胞的全能性。由于控制细胞生长和分化的需要,对培养基、激素和培养方法都进行了大量研究,研究出了MS、White、B5等广泛用于不同植物组织培养的培养基,也创立了多种培养方法,如微室悬滴培养法、看护培养法等。这一阶段技术上的突破为植物组织培养应用于农业、工业、医药等打下了良好的基础。这一阶段是植物组织培养的最关键时期,使之达到成熟的阶段,从而使植物组织培养进入黄金时期。
据统计,在20世纪60年代初期,全世界还只有十几个国家的少数实验室从事组织培养研究,但到了70年代,植物组织培养领域仍然空白的国家已经屈指可数。由于有了前面的理论基础和技术条件,加之在20世纪60年代用组织培养快速繁殖兰花获得巨大成功之后,极大地推动了植物组织培养的全面发展,微繁技术得到广泛应用。继兰花工厂化繁殖成功之后,快速繁殖开始用于重要的、经济价值高的、名特优作物新品种,如甘蔗、香蕉、柑橘、咖啡、苎麻、玫瑰、郁金香、菊花、牡丹、康乃馨、桉树、泡桐等。继马铃薯脱毒苗的研究成功,又能生产草莓、葡萄、大蒜、苹果、枣树等大量无性繁殖植物的脱毒苗应用于生产。仅据20世纪80年代初的统计,植物组织培养进行的无性繁殖所涉及的植物就已达数千种。
植物组织培养有着广阔的应用前景,这已为近年来日益增多的实践所证实。随着研究的深入,组织培养将会显示更多的作用。
首先,在人工种子的研究与产生方面。由于植物组织培养过程中发现有体细胞胚胎产生(在形态上类似于合子胚),如果给这种体细胞胚包上一屋人工胚乳就能得到人工种子。人工种子在适当条件下也能象普通种子一样萌发并生长。大量繁殖体细胞胚并制成人工种子为无性繁殖开辟了崭新的领域。建立并发展人工种子技术可以快速繁殖一个优良品种或杂种,以保持它们的优良种性和整齐度。一些名贵品种、难以保存的种子资源、遗传性不稳定或育性不佳的材料,均可采用人工种子技术进行繁殖。人工种子体积小,仅几毫米,而通常离体繁殖的体是十几或几十厘米。繁殖体小的人工种子,贮藏和运输均十分方便,而且可以像天然种子那样用机械在田间直接插种。

某种植物的基因图谱
其次,在与基因工程结合的研究与应用方面,近年来由于通过基因工程克隆了大量有用产物的基因,特别是干扰素、胰岛素等药物已达到工业化生产的规模,植物学科受到前所未有的震动,许多生物学家和生物化学家着手开始基因工程研究,试图按人们的需要来定向地改良作物。如将抗病、抗虫、抗盐碱的基因或增强农作物光合作用的基因导入一些重要的作物中,并通过组织培养进行无性繁殖来扩增所获得的具有优良性状的植株,从而尽快应用于生产中产生经济效益。目前已有抗虫棉、抗病毒的烟草用于大田实验,引起了各方的广泛关注。科学家预言,21世纪作物的产量将大幅度提高,作物的品质将得到飞跃性的改良。
再次,在生产有用产物的研究与应用上,组织培养也有广阔的前景。植物几乎能生产人类所需要的一切天然有机化合物,如蛋白质、脂肪、糖类、药物、香料等,而这些化合物都是在细胞内合成的。因此,通过植物组织培养对植物的细胞、组织或器官进行无性繁殖,在人工控制的条件下有可能生产这些化合物。这个目标一旦实现,就会改变过去靠天、靠阳光种植作物的传统农业,而成为工厂化农业生产,从而摆脱老天爷的支配,并为人类进军其他星球建立空间工厂化农业来提供粮食、药品等打下坚实基础。这种神奇的理想,随着科技的发展一定能够实现。
由于环境污染的日益加剧,植物种质资源受到极大威胁,大量有用基因遭到灭顶之灾,特别是珍贵物种。用细胞和组织培养法低温保存种质,抢救有用基因的研究已引起世界各国科学家和政府的广泛重视,进展很快。象胡萝卜和烟草等植物的细胞悬浮物,在-20℃~-196℃的低温下贮藏数月,尚能恢复生长,再生成植株。如果南方的橡胶资源库能通过这种方法予以保护,将为生产和研究提供源源不断的原材料。
最后是理论研究上的应用。理论是在实践的基础上总结并发展起来的,对实践具有一定指导作用,同时实践的发展又能推动理论研究的深入及更新。植物组织培养作为一门技术,在植物学的各个方面都得到了广泛应用,推动了植物遗传、生理、生化和病理学的研究,它已成为植物科学研究中的常规方法。
花药和花粉培养获得的单倍体和纯合二倍植物,是研究细胞遗传的极好材料。在细胞培养中很易引起变异和染色体变化,从而可得到作物的新类型,为研究染色体工程开辟新途径。
细胞是进行一切生理活动的场所,植物组织培养有利于了解植物的营养问题,对矿物质营养、有机营养、植物激素的作用机理等可进行深入研究,比自然条件下的实验条件易于控制,更能得出有说服力的结论。
采用细胞培养鉴定植物的抗病性也会变得简便有效,能很快得到结果。
我们可以看出,植物克隆技术已渗透到农、工、医及人民生活的各个方面,随着科技的发展,其应用前景将日益广阔。