小学数学教材分析与教学设计

卢冬君,刘海军,肖爱芝

目录

  • 1 第一章 绪论
    • 1.1 第一节《小学数学教材分析与教学设计》课程内容
    • 1.2 第二节《小学数学教材分析与教学设计》课程意义
  • 2 第二章 走进小学数学课程
    • 2.1 第一节 数学的基本认识
    • 2.2 第二节 小学数学学科
    • 2.3 第三节 小学数学学科的性质与任务
  • 3 第三章 小学生的数学认知特点
    • 3.1 第一节 小学生的数学认知特点1
    • 3.2 第二节 小学生的数学认知特点2
  • 4 第四章 小学数学教学方法与教学设计
    • 4.1 第一节 小学数学常用教学方法
    • 4.2 第二节 小学数学教学设计概述
    • 4.3 第三节 小学数学概念的教学设计
    • 4.4 第四节小学数学规则的教学设计
  • 5 第五章小学数学说课、听课与评课
    • 5.1 第一节 小学数学说课
    • 5.2 第二节 小学数学听课
    • 5.3 第三节 小学数学评课
  • 6 第六章 小学数学课程标准解读
    • 6.1 第一节 我国现行小学数学教学内容
    • 6.2 第二节  小学数学课程标准
  • 7 每行填写一个目录,目录的层级用两个空格区分,只支持三级目录
  • 8 比如:
  • 9 一级目录
    • 9.1 二级目录
      • 9.1.1 三级目录
    • 9.2 二级目录
      • 9.2.1 三级目录
  • 10 一级目录
    • 10.1 二级目录
      • 10.1.1 三级目录
    • 10.2 二级目录
      • 10.2.1 三级目录
  • 11 每行填写一个目录,目录的层级用两个空格区分,只支持三级目录
  • 12 比如:
  • 13 一级目录
    • 13.1 二级目录
      • 13.1.1 三级目录
    • 13.2 二级目录
      • 13.2.1 三级目录
  • 14 一级目录
    • 14.1 二级目录
      • 14.1.1 三级目录
    • 14.2 二级目录
      • 14.2.1 三级目录
第二节 小学数学学科


“学科”是一个教育学的概念,专指学校课程内容中一定科学领域中的总称。当数学成为学校的教育教学的对象的时候,就被称之为“数学学科”。

一、作为教育的数学(数学学科与数学科学的区别)

(一)从知识体系看

作为科学的数学,是一个完整的、独立于任何人的任何知识结构而存在的、特定的知识和思想体系。而作为教育的数学,则是一个经过人为的加工和提炼的、依据某一特殊人群(作为获得基础的人类文化遗产的学生)的特殊需要(即数学教育的目标)和经验、知识与能力结构而设计的知识和思想体系;

(二)从数学活动看

作为科学的数学,是一类专门的人(可以称之为“数学家”的那些人)的一个完全独立的探索、发现与创造的活动过程,而作为教育的数学,则是一类专门的人(可以称之为“学生”的那些人)在某些专门的人(可以称之为“教师”的那些人)的引导和帮助下的一个模仿探索、发现与创造的活动过程;

(三)从对象特征看

作为科学的数学,其对象是一个完全由符号、概念和规则等构成的和完全开放的逻辑结构系统,而作为教育的数学,其对象则是含有经验、直观的和几乎是封闭的逻辑结构系统;最后,从活动的目的看,作为科学的数学活动,是为了获得发现和创造数学,而作为教育的数学活动,是为了“接受”已经发现和创造的数学。

二、对小学生数学学科性质的再认识

(一)生活数学观

生活数学,是一种存在于生活实践活动中的非形式教育,是人们在社会生活的实践活动中获得交流和理解的数学。生活数学观是从科学数学观的对立面提出来的,儿童在日常生活中进行的有意识的经验活动被认为是“日常概念”,也被称为“前科学概念”---一种由经验形成的一种非精确化的观念。儿童的数学活动并不都是从观察抽象的符号开始的,更多的是从观察现象开始的。要让数学的学习与儿童自己的生活充分融合起来,将学习纳入他们的生活背景之中,再让他们自己寻找、发现、掌握数学知识。书上有个例子:

一个儿童,两只手上都有几块糖,他想知道有多少,就会用数数的方法,从一种手上的糖果开始数起,一次数到另一只手上的最后一块糖果。这样的活动反复几次以后,他会将两只糖果一起倒在桌上,然后再来数。这样,他就构建了基本的“加法”思想。

对于小学生来说,数学学习的过程其实就是一种经验积累的过程,在儿童的生活中处处有数学。“中小学数学不应是外在的知识,让学生感到陌生,而要处于学生的文化和生活现实中”。正如Dewey所说,必须填平儿童兴趣和经验与科学之间的鸿沟,儿童的经验和文化应该成为学校学习的基础。

(二)儿童数学观

儿童数学观是从成人数学观的对立面提出的一种数学观。所谓儿童的数学,就是作为儿童生活的数学,一种非完全形式化的、从日常经验开始的,通过并不严格的归纳概括而形成的数学,一种为了理解生活世界而学习的数学。英美西方国家大都采用这种观点。

小学生学习数学的基本方法是对经验现象的逻辑归纳和引申,而成人在学习数学是采用的基本方法是逻辑演绎。成人在学习高等数学前,不一定有从事应用和计算微积分的经验,而小学生在日常活动中经常有加减等运算的的体验,如购物活动、游戏活动等。实际上,每个学生并不是上学时才接触数学,他们在日常生活中会接触到各种数学问题,逐步形成自己的数学认识。皮亚杰的研究表明,儿童的日常活动、购物活动,对于学习数学概念的发展具有重大意义。

附:弗赖登塔尔(HFreudenthal1905—1990)是国际上极负盛名的荷兰数学家和数学教育家.弗赖登塔尔指导、推动和亲身参与了荷兰的数学教育改革实践,并对20世纪国际数学课程的改革与发展作出了重大贡献.1987年,已经80多高龄的弗赖登塔尔到我国访问,他在华东师范大学数学系演讲,走上讲台的第一句话就说:在荷兰,中学教室里的桌椅摆法都是围成一圈,教师在学生中间活动。如果有一个学校的教室象今天这样摆桌椅:前面一张讲台,下面是一排排桌椅,那么这所中学的校长大概要被撤职了!这时教室发出一阵笑声,同时也引起人们的思索.他的演讲为我国数学教育改革提供了新的思路,他的思想对我国数学教育研究产生了积极而深远的影响。弗赖登塔尔把自己的一生献给了数学与数学教育事业。作为20世纪最伟大、最具有影响的数学教育家,他的许多观点将会影响着世界数学教育的改革与发展。

附:荷兰的数学教育(为什么荷兰的小孩不怕数学?)

早在40年前,差不多是60年代末开始,荷兰就开始进行数学教育的改革。这不仅是形式上的改变,而是真正从内涵上翻动的数学教学改革。

荷兰人认为,数学教育应该是现实的,从现实的生活中出发。说到数学教育要“现实”,是不是只要教小孩算柴米油盐、日常生活的买卖,这种实用的就好?但是,如果荷兰的数学课只要教实用的东西,那么,为什么还有90%的荷兰大学生会有兴趣去选修高等数学呢?所以,我们再来仔细揣摩荷兰人所说“实用数学”、或“现实数学”,到底是什么意思?

荷兰人所说的数学要“现实”、或“实用”,有一个意思是说,学生从自己熟悉的生活里发现数学概念,再把学到的数学概念运用到现实生活中里。随着孩子的年龄渐长,孩子渐渐可以跨入比较抽象的数学符号计算,荷兰的数学老师在教每一个单元时,还是会注意数学跟自然界、或跟现实生活的联系。

这样教学的目的,是让孩子对数学有感觉,让数学思维和生活可以连结的。荷兰的数学教育家说:“在代数和煮土豆之间,在工作地点问题和几何学之间,有一条深深的鸿沟,数学教育的任务是要填平这些鸿沟。”

譬如对于小小孩,荷兰新数学的教法,让孩子从数小木棒和小石头开始,然后像是作工作笔记的方式,让孩子们用自己的方式,去作数字相关的纪录,先让孩子弄清楚数学加减的概念、意思是什么,而不是马上把算数、抽象的符号塞给孩子。

(三)现实教学观

现实数学观所对应的是理论数学观。它与理论数学观的区别是:理论的数学是依靠公理来支撑,不依赖人的经验,存在于数学家的头脑。现实数学观是依靠“局部组织”来支撑。它往往会依赖人的经验,存在于我们的现实中。现实数学观实际上是由不同个体在不同的环境中的不同生活经历所形成的,用以支持自己在社会生活中的行为决策和行为方式。因为每个人的经历不同他们对现实数学的理解也会有差异,所以小学数学学科的任务,通过教师有效的教学组织,引导儿童将自己的经验不断地“数学化”从而构建一些基础的、必要的和现实的数学。

(四)基本结论

做为小学数学课程的数学学科,至少具有如下几个性质特征:

1.生活性;2.现实性;3.体验性