非参数统计

王小刚

目录

  • 1 导言
    • 1.1 课程介绍
    • 1.2 非参数统计
    • 1.3 假设检验
  • 2 统计软件R的使用
    • 2.1 R软件下载安装使用
    • 2.2 R外部数据读写
  • 3 单样本检验
    • 3.1 符号检验
    • 3.2 Wilcoxon符号秩和检验
    • 3.3 游程检验
  • 4 两相关样本检验
    • 4.1 两相关样本的符号检验
    • 4.2 两相关样本的秩和检验
  • 5 两独立样本的非参数检验
    • 5.1 MWW检验
    • 5.2 WW检验
    • 5.3 两样本的卡方检验
    • 5.4 两样本的KS检验
  • 6 k个独立样本的非参数检验
    • 6.1 Kruskal-Wallis检验
    • 6.2 k个样本的卡方检验
  • 7 k个相关样本的非参数检验
    • 7.1 Cochran Q检验
    • 7.2 Friedman检验
  • 8 分布检验
    • 8.1 卡方检验
    • 8.2 KS检验
  • 9 两个样本的相关分析
    • 9.1 等级相关
    • 9.2 Kendall相关
    • 9.3 偏秩相关
  • 10 k个样本的相关分析
    • 10.1 Kendall完全秩评定协和系数
  • 11 列链表中的相关测量
    • 11.1 列链表中的卡方检验
    • 11.2 PRE测量
PRE测量

9.3 列联表的PRE测量法

实际研究中,仅仅研究变量间的相关程度远远不够,有时需要利用变量间的相关关系,从一个变量去预测另一变量。或者说,在测量相关时,能够得知进行预测能够减少多大比例的误差。

列联表的PRE测量法不受测量层次的限制。因此,PRE测量法比卡方测量法更有意义,也应用更广泛。

两个变量间的关系越强,以一个变量预测另一个变量的误差也就越小,也就是减少的预测误差越多。故消除的误差多少可作为反映变量间相关程度强弱的度量。

一、Lambda相关测量法

lambda系数测定变量间相关程度的方法;适用于定类变量间的测量;

1.1、非对称形式的Lambda相关测量

非对称关系:两个变量X和Y存在某种因果关系,自变量X会影响因变量Y,而Y不会影响X。

PRE=(E1-E2)/(E1)

E1: 全部误差;E2:利用X与Y的关系进行预测时产生的误差。

E1-E2:以X预测Y时减少的误差

My表示Y的众数,n为总次数;my表示在每个X值得条件下Y的众数;Sum(my)表示各列中Y的众数之和

1.2、对称形式的Lambda相关测量

对称关系:研究X和Y之间的相互影响,不在乎谁是自变量

1.3、 Lambda相关测量法的特点

1. lambda系数取值在0,1之间;

2. lambda是对称时的系数,lambda_xy和lambda_yx是非对称关系时的系数;

3. 当众数集中在条件次数表的某一行或某一列时,lambda系数为0,但并不表示X和Y完全无关;

1.4、 显著性检验

显著性检验方法和前述列联表的显著性检验一致。