目录

  • 1 什么是物理
    • 1.1 物理是文化
    • 1.2 探秘宇宙
    • 1.3 物理的工具
    • 1.4 猜与争论
    • 1.5 近年来的物理成就
  • 2 简单的牛顿力学
    • 2.1 惯性系中的牛顿力学
    • 2.2 摩擦力
    • 2.3 惯性系
    • 2.4 万有引力
  • 3 机械能
    • 3.1 是什么解释了复杂的力
    • 3.2 力的效果——动能
    • 3.3 保守力场——势能
    • 3.4 真的守恒吗?
    • 3.5 为什么会旋转?
    • 3.6 完美的模型——刚体
    • 3.7 陀螺动起来
  • 4 振动与波
    • 4.1 简谐振动
    • 4.2 强迫振动
    • 4.3 振动的传播——波
    • 4.4 干涉和衍射
    • 4.5 驻波
  • 5 光学
    • 5.1 光就是电磁波
    • 5.2 光的波粒之争
    • 5.3 光学成像
    • 5.4 眼睛的功能
    • 5.5 光的波动性
  • 6 热学与统计物理
    • 6.1 从微观到宏观
    • 6.2 温度是什么?
    • 6.3 热力学系统
    • 6.4 理想的气体
    • 6.5 配容
    • 6.6 温度与高度
    • 6.7 气体输运
    • 6.8 热力学定律
    • 6.9 熵与天气预报
  • 7 电学
    • 7.1 库仑定律
    • 7.2 电场
    • 7.3 高斯定理
    • 7.4 电场的一些性质
    • 7.5 电路
  • 8 磁学
    • 8.1 磁的现象
    • 8.2 洛伦磁力
    • 8.3 安培定律
    • 8.4 法拉第的实验
    • 8.5 磁介质
  • 9 量子力学
    • 9.1 量子论的诞生
    • 9.2 波粒二象性
    • 9.3 不确定关系
    • 9.4 自旋
    • 9.5 德布罗意常数
    • 9.6 隧道效应
    • 9.7 纠缠态
    • 9.8 量子计算机
  • 10 分子、原子、夸克
    • 10.1 卢瑟福的发现
    • 10.2 元素周期表的由来
    • 10.3 构成万物的分子
    • 10.4 分子间的作用力
    • 10.5 神秘的原子核
    • 10.6 原子能的利用
    • 10.7 物质的基本构成
    • 10.8 更多更小的粒子
    • 10.9 夸克
    • 10.10 超弦理论
  • 11 高能物理
    • 11.1 超高能量
    • 11.2 希格斯粒子
    • 11.3 丁肇中的故事
    • 11.4 中微子的发现
    • 11.5 人类的脚步
  • 12 相对论
    • 12.1 爱因斯坦火车
    • 12.2 相对论变换
    • 12.3 尺度变短时钟变慢
    • 12.4 能量的来源
    • 12.5 广义相对论
  • 13 简单天文学
    • 13.1 我们的宇宙
    • 13.2 恒星的死亡
    • 13.3 黑洞
    • 13.4 引力波的存在
  • 14 大爆炸宇宙学
    • 14.1 多普勒效应
    • 14.2 宇宙微波背景辐射
    • 14.3 宇宙的起源
    • 14.4 星体的起源
    • 14.5 正反物质不对称性
    • 14.6 暗物质与暗能量
  • 15 前进中的物理学与人类文明
    • 15.1 什么是物理学
    • 15.2 物理从实验中来
    • 15.3 物理与数学
    • 15.4 模型的应用
    • 15.5 物理中国梦
正反物质不对称性
  • 1 视频
  • 2 章节测验


CP破坏

即在弱互相作用下,宇称不守恒。在宇宙学中它对解释今天宇宙中物质的数量超过反物质的数量有极其重要的意义。1964年在CP破坏首先在中性K介子的衰变中被实验证实。1980年詹姆斯·克罗宁和瓦尔·菲奇因此被授予诺贝尔物理学奖。至今为止对CP破坏的研究依然是一个在理论物理和试验物理中非常活跃的领域。

CP

    CP是粒子物理学中两个对称运算的乘积:C是反粒子共轭运算,这个运算将一个粒子转化为其反粒子,P是宇称,这个运算造成一个物理系统的镜像。在强相互作用电磁作用中CP转化运算对整个物理系统不产生任何影响(CP对称),但是在一定的弱相互作用中这个对称被微小地打破。在1950年代里人们发现宇称破坏后曾经设想CP对称可以补救这个破坏。

    宇称守恒的基本思想是在镜像反演后粒子物理学的公式不变。也就是说一个系统里的反应(比如化学反应或者放射性衰退)在一个镜像系统中以同样的速度进行。直到1940年代物理学家相信所有的反应全部是宇称守恒的。1950年代物理学家发现了宇称破坏的反应。一些放射性反应显然不是宇称守恒的:它们的镜像系统里的反应概率比原来的反应概率低。

    在量子力学中一个系统中的一个对称被破坏后往往可以通过另一个对称来弥补,这两个对称的乘积依然守恒。在宇称破坏被发现后不久物理学家就发现了希尔伯特空间结构中的这个很微妙的特性。当时有人猜测反粒子共轭运算是可以弥补宇称破坏的对称。

   简单地说反粒子共轭运算是粒子与反粒子之间的对称,因此CP对称被看作是物质与反物质间的对称。

破坏

    詹姆斯·克罗宁和瓦尔·菲奇提供了明显的CP对称也被破坏的迹象。为此他们于1980年获得诺贝尔奖。他们的发现显示弱相互作用既破坏了反粒子共轭运算C,同时也破坏了宇称P。这个发现对粒子物理学带来了巨大的冲击,至今为止它为粒子物理学和宇宙学的核心问题打开了大门。CP被微弱地破坏了,但是与此同时又几乎保持了守恒是一个重要的未解之谜。

    克罗宁、菲奇等在一个K介子衰变的实验中发现了CP对称的破坏,在这个物理现象中只有一个更弱的对称被保存了,即CPT对称。在CPT对称中除C和P外还有一个第三个运算符号,即时间反演(T)也必须加入。时间反演与运动反演相应。在物理定理中时间反演对称表示任何运动的反运动也同样存在。因此CPT对称被看作组成所有基本反应形式的精确对称。由于CPT对称任何破坏CP对称的反应也破坏T对称。也就是说任何破坏CP对称的反应的逆反应发生的可能性与原反应不同。CPT对称被看作是量子场论中的一个基本定理,在这里反粒子共轭运算、宇称和时间反演同时运用。

    最近美国斯坦福直线加速器中心和日本高能加速器研究机构的一代新的试验使用B介子也发现了CP破坏。此前至少理论上有可能CP破坏仅限于K介子。这些试验无疑地证明了标准模型理论中的反应破坏CP。

    通过在CKM矩阵中加入一个复数项标准模型理论可以包含CP破坏。而这个复数项的引入(也就是CP破坏的引入)则表明至少有三代夸克。

    至今为止没有任何发现量子色动力学破坏CP的试验。