压电铁电

王春雷

目录

  • 1 压电铁电物理 绪论
    • 1.1 绪论(上)
    • 1.2 绪论(下)
  • 2 晶体结构
    • 2.1 晶体结构(一)
    • 2.2 晶体结构(二)
    • 2.3 晶体结构(三)
    • 2.4 晶体结构(四)
    • 2.5 晶体结构(五)
    • 2.6 晶体结构(六)
    • 2.7 晶体结构(七)
    • 2.8 晶体结构(八)
    • 2.9 晶体结构(九)
    • 2.10 晶体结构(十)
    • 2.11 晶体结构(十一)
    • 2.12 晶体结构(十二)
    • 2.13 晶体结构(十三)
  • 3 介电性质
    • 3.1 介电性质(一)
    • 3.2 介电性质(二)
    • 3.3 介电性质(三)
    • 3.4 介电性质(四)
    • 3.5 介电性质(五)
    • 3.6 介电性质(六)
    • 3.7 介电性质(七)
    • 3.8 介电性质(八)
    • 3.9 介电性质(九)
    • 3.10 介电性质(十)
    • 3.11 介电性质(十一)
    • 3.12 介电性质(十二)
    • 3.13 介电性质(十三)
    • 3.14 介电性质(十四)
  • 4 晶体的弹性性质
    • 4.1 晶体的弹性性质(一)
    • 4.2 晶体的弹性性质(二)
    • 4.3 晶体的弹性性质(三)
    • 4.4 晶体的弹性性质(四)
    • 4.5 晶体的弹性性质(五)
    • 4.6 晶体的弹性性质(六)
    • 4.7 晶体的弹性性质(七)
  • 5 压电效应与压电方程组
    • 5.1 压电效应与压电方程组(一)
    • 5.2 压电效应与压电方程组(二)
    • 5.3 压电效应与压电方程组(三)
    • 5.4 压电效应与压电方程组(四)
    • 5.5 压电效应与压电方程组(五)
    • 5.6 压电效应与压电方程组(六)
    • 5.7 压电效应与压电方程组(七)
    • 5.8 压电效应与压电方程组(八)
    • 5.9 压电效应与压电方程组(九)
    • 5.10 压电效应与压电方程组(十)
    • 5.11 压电效应与压电方程组(十一)
    • 5.12 压电效应与压电方程组(十二)
    • 5.13 压电效应与压电方程组(十三)
    • 5.14 压电效应与压电方程组(十四)
    • 5.15 压电效应与压电方程组(十五)
    • 5.16 压电效应与压电方程组(十六)
    • 5.17 压电效应与压电方程组(十七)
    • 5.18 压电效应与压电方程组(十八)
    • 5.19 压电效应与压电方程组(十九)
    • 5.20 压电效应与压电方程组(二十)
    • 5.21 压电效应与压电方程组(二十一)
  • 6 压电振子的振动模式
    • 6.1 压电振子的振动模式(一)
    • 6.2 压电振子的振动模式(二)
    • 6.3 压电振子的振动模式(三)
    • 6.4 压电振子的振动模式(四)
    • 6.5 压电振子的振动模式(五)
    • 6.6 压电振子的振动模式(六)
    • 6.7 压电振子的振动模式(七)
    • 6.8 压电振子的振动模式(八)
    • 6.9 压电振子的振动模式(九)
    • 6.10 压电振子的振动模式(十)
    • 6.11 压电振子的振动模式(十一)
    • 6.12 压电振子的振动模式(十二)
    • 6.13 压电振子的振动模式(十三)
    • 6.14 压电振子的振动模式(十四)
    • 6.15 压电振子的振动模式(十五)
    • 6.16 压电振子的振动模式(十六)
    • 6.17 压电振子的振动模式(十七)
    • 6.18 压电振子的振动模式(十八)
    • 6.19 压电振子的振动模式(十九)
    • 6.20 压电振子的振动模式(二十)
压电振子的振动模式(二)




 



     薄长片压电振子的长度伸缩振动,又称纵向振动,是压电元件中常采用的一种振动方式,也是最简单的振动方式。

    在这一节中除了讨论压电振子的纵向振动特性外,还要讨论压电振子的等效电路以及压电材料的介电常数、弹性常数和压电常数的测量等内容。 



   设d31≠0的压电晶体的zx切割晶片,长度l沿x方向,宽度lw沿y方向,厚度lt沿z方向,并且有l>>lw和lt,电极面与z轴垂直,如图6-3所示。因为l>>lw和lt,长度方向是主要因素,所以只考虑应力分量X1的作用,其它应力分量X2、X3、X4、X5、X6可以忽略不计。 


                



   

 

因为电极面垂直于z轴,所以只要考虑电场分量E3的作用,其它电场分量E1、E2可以忽略不计。又因为测量时(或工作时)只是薄片的中心被夹住,片的两端为自由端,即薄片的边界条件为机械自由,在边界上的应力分量X1|边界=0。还有电极面是等位面。

在此情况下,可以选X1、E3为自变量,用第一类压电方程组,即:

                      

 根据牛顿第二运动定律得到薄长片的运动方程为:

                               

             

为了得到薄长片压电振子的波动方程,就需要根据压电方程组中应力与应变的关系式:


            

代入波动方程得:


               

因为压电振子的电极面是等位面,电场分量E3在晶片中是均匀分布的,即有E3/x=0。将这些关系代入上式式即得薄长片压电振子的波动方程为:

 声速:

若压电振子是在交变电场 E3=E0ejt,的激发下,通过压电效应产生纵向振动,则上式的通解为:

式中:波矢k=/c;A、B为待定系数,由边界条件确定。


   

因为压电振子的两端为自由端,它的机械自由边界条件为:

    x=0时,有X1|x=0=0;  

    x=l时,有X1|x=l=0;


而应力的表达式可以写为:

        

应力表达式包含待定参数A、B

   


代入边界条件得:

x=0时,X1=0:

                

x=l时, X1=0:

       

稍加整理即得: 


                 



符号有些问题:x表示位置和应变

A、B代回到波动方程的解中,得到满足边界条件的解为:

位移(形变)是由压电性引起的!


   为了对上式所表示的波形有较具体的了解,在图5-2中,绘出了t=0t=π/=1/2周期时的波形。从图5-2中可以看出上式代表纵驻波方程式,即在薄长片压电振子中传播的是纵驻波。