压电振子的振动模式(一)
上一节
下一节

◎薄长条纵向伸缩振动
◎薄圆片、棒、薄圆环、薄球壳、面切变、弯曲振动,厚度振动
◎能陷振动模
◎机电类比和线性机电网络
前几章我们根据晶体的对称性,分析讨论了不同对称性的压电晶体所具有的独立的介电常数、弹性常数、压电常数,以及这些量与电学量—电位移、电场强度等之间的关系,与机械量—应力、应变之间的关系(胡克定律),与电学量和机械量之间的关系(压电方程组)等等,但是未涉及到如何确定这些常数的数值。
在实验上通常是通过测定压电元件的谐振频率和反谐振频率的方法来确定这些常数的,这就要求对晶体的这些常数同晶片的谐振频率和反谐振频率之间的关系进行理论分析。这种实验的和理论的分析工作,是研究压电晶体的一个重要方面。
另一方面,压电元件常用于振荡器、滤波器、换能器、光调幅器以及延迟线等等。这些器件都是压电效应来激发压电体的机械振动。因此,只有通过对压电元件的振动模式的讨论,才能较深入地了解压电元件的工作原理和工作性质。
这些晶片大多数薄长片、圆片、方片等较简单的形状,它的基本振动模式(如伸缩振动、切变振动等)大体上与各向同性的弹性介质相同,都是在有限介质中以驻波的形式传播,只有在非常简单的情况下,才可能得到波动方程的准确解。

