压电铁电

王春雷

目录

  • 1 压电铁电物理 绪论
    • 1.1 绪论(上)
    • 1.2 绪论(下)
  • 2 晶体结构
    • 2.1 晶体结构(一)
    • 2.2 晶体结构(二)
    • 2.3 晶体结构(三)
    • 2.4 晶体结构(四)
    • 2.5 晶体结构(五)
    • 2.6 晶体结构(六)
    • 2.7 晶体结构(七)
    • 2.8 晶体结构(八)
    • 2.9 晶体结构(九)
    • 2.10 晶体结构(十)
    • 2.11 晶体结构(十一)
    • 2.12 晶体结构(十二)
    • 2.13 晶体结构(十三)
  • 3 介电性质
    • 3.1 介电性质(一)
    • 3.2 介电性质(二)
    • 3.3 介电性质(三)
    • 3.4 介电性质(四)
    • 3.5 介电性质(五)
    • 3.6 介电性质(六)
    • 3.7 介电性质(七)
    • 3.8 介电性质(八)
    • 3.9 介电性质(九)
    • 3.10 介电性质(十)
    • 3.11 介电性质(十一)
    • 3.12 介电性质(十二)
    • 3.13 介电性质(十三)
    • 3.14 介电性质(十四)
  • 4 晶体的弹性性质
    • 4.1 晶体的弹性性质(一)
    • 4.2 晶体的弹性性质(二)
    • 4.3 晶体的弹性性质(三)
    • 4.4 晶体的弹性性质(四)
    • 4.5 晶体的弹性性质(五)
    • 4.6 晶体的弹性性质(六)
    • 4.7 晶体的弹性性质(七)
  • 5 压电效应与压电方程组
    • 5.1 压电效应与压电方程组(一)
    • 5.2 压电效应与压电方程组(二)
    • 5.3 压电效应与压电方程组(三)
    • 5.4 压电效应与压电方程组(四)
    • 5.5 压电效应与压电方程组(五)
    • 5.6 压电效应与压电方程组(六)
    • 5.7 压电效应与压电方程组(七)
    • 5.8 压电效应与压电方程组(八)
    • 5.9 压电效应与压电方程组(九)
    • 5.10 压电效应与压电方程组(十)
    • 5.11 压电效应与压电方程组(十一)
    • 5.12 压电效应与压电方程组(十二)
    • 5.13 压电效应与压电方程组(十三)
    • 5.14 压电效应与压电方程组(十四)
    • 5.15 压电效应与压电方程组(十五)
    • 5.16 压电效应与压电方程组(十六)
    • 5.17 压电效应与压电方程组(十七)
    • 5.18 压电效应与压电方程组(十八)
    • 5.19 压电效应与压电方程组(十九)
    • 5.20 压电效应与压电方程组(二十)
    • 5.21 压电效应与压电方程组(二十一)
  • 6 压电振子的振动模式
    • 6.1 压电振子的振动模式(一)
    • 6.2 压电振子的振动模式(二)
    • 6.3 压电振子的振动模式(三)
    • 6.4 压电振子的振动模式(四)
    • 6.5 压电振子的振动模式(五)
    • 6.6 压电振子的振动模式(六)
    • 6.7 压电振子的振动模式(七)
    • 6.8 压电振子的振动模式(八)
    • 6.9 压电振子的振动模式(九)
    • 6.10 压电振子的振动模式(十)
    • 6.11 压电振子的振动模式(十一)
    • 6.12 压电振子的振动模式(十二)
    • 6.13 压电振子的振动模式(十三)
    • 6.14 压电振子的振动模式(十四)
    • 6.15 压电振子的振动模式(十五)
    • 6.16 压电振子的振动模式(十六)
    • 6.17 压电振子的振动模式(十七)
    • 6.18 压电振子的振动模式(十八)
    • 6.19 压电振子的振动模式(十九)
    • 6.20 压电振子的振动模式(二十)
绪论(上)
  • 1
  • 2







   

   晶体结构    宏观理论

   介电性质    微观理论

   弹性性质    电畴结构

   压电性质    介电响应

   铁电性质    应用简介

 


◎ 1880年,居里兄弟首先发现电气石的压电效应,从此开始了压电学的历史。

◎ 1881年,居里兄弟实验验证了逆压电效应,给出石英相同的正逆压电常数。

◎ 1894年,Voigt指出,仅无对称中心的二十种点群的晶体才有可能具有压电效应,石英是压电晶体的一种代表,它被取得应用。

◎ 第一次世界大战,居里的继承人郎之万,最先利用石英的压电效应,制成了水下超声探测器,用于探测潜水艇,从而揭开了压电应用史篇章

◎ 第二次世界大战中发现了BaTiO3陶瓷

◎ 1947年,美国Roberts在BaTiO3陶瓷上,施加高压进行极化处理,获得了压电陶瓷的电压性。随后,日本积极开展利用BaTiO3压电陶瓷制作超声换能器、高频换能器、压力传感器、滤波器、谐振器等各种压电器件的应用研究,这种研究一直进行到50年代中期。

◎ 1955年,美国B.Jaffe等人发现了比BaTiO3压电性更优越的锆钛酸铅固溶体(PbZrxTi1-xO3,PZT)压电陶瓷.BaTiO3时代难于实用化的一些用途,特别是压电陶瓷滤波器和谐振器,随着PZT的问世,而迅速地实用化,应用声表面波(SAW)的滤波器、延迟线和振荡器等SAW器件,在七十年代后期也取得了实用化。

◎ 上世纪70年代初期,人们在锆钛酸铅材料二元系配方Pb(Zr,Ti)O3大基础上又研究了加入第三元改性的压电陶瓷三元系配方,如铌镁酸铅系为Pb(Mg1/3Nb2/3)(ZrTi)O3,可广泛用于拾音器、微音器、滤波器、变压器、超声延迟线及引燃引爆方面。

◎ 再后来,人们又在三元系压电陶瓷配方基础上又研究了四元系压电陶瓷材料,如:Pb(Ni1/3Nb2/3)(Zn1/3Nb2/3)(ZrTi)O3,Pb(Mn1/2Ni1/2)(Mn1/2Zr1/2)(ZrTi)O3等,可用来制造滤波器和受话器等。

◎ 二十世纪九十年代,PMN-PT单晶的成功制备,并发现其优异的机电性能,使这类材料的研究又形成了一个新的高潮。

 

◎ 铁电体 FeRROELECTRICS,铁Fe

◎ 1665 Seignette @ Rochelle,合成:酒石酸钾钠NaKC4H4O6·4H2O

◎ 1920 Valasek,罗息盐,Rochelle Salt,奇异介电特性,Rochelle-electricity, Seignette-electricity at Europe Journals, H2O plays role?

◎ 1920-1939  磷酸二氢钾 KH2PO4( KDP) , 共性:氢键 H-bond

◎ 1940-1958  唯象理论, BaTiO3等, 二次世界大战WWII,水听器,铁电性一词出现, 与铁磁性相似, 磁滞回线, [日文]强诱电性

◎ 1959-1970’s  软模理论 Soft modes, Pb(ZrxTi1-x)O3(PZT)系列压电陶瓷,其它实用性的压电材料系列不断被发现

◎ 1980’s–today,军用->民用,新材料,新现象,新应用,如:铁电移相器,FeRAM 铁电存储器

◎ 二十世纪五十年代,交通大学(上海)开设电介质物理课程,陈季丹

◎ 山东大学压电铁电陶瓷教研室(1976),电介质教研室1986

◎ 中科院物理所,中科院上海硅酸盐研究所,山东大学晶体材料研究所,中科院福建物质结构研究所,四川压电与器件研究所等…

◎ 西安交通大学, 清华大学,中山大学,同济大学,浙江大学,天津大学,四川大学,湖北大学,陕西师范大学,武汉理工大学,上海交通大学等…

◎ 企业,国营798厂,私营民营企业等 …