材料化学13级双语

刘志明 教授

目录

  • 1 第一章 绪论
    • 1.1 Historical Perspective
    • 1.2 Materials Science and Engineering
    • 1.3 Why  Study  Materials Chemistry?
    • 1.4 Materials and Its Components
    • 1.5 Classification of Materials
    • 1.6 Materials Science and Materials Chemistry
    • 1.7 Research Field of Materials Chemistry
    • 1.8 Development of materials
    • 1.9 Composition, Structure and Performance of Materials
    • 1.10 Performance of Materials
  • 2 第二章  固体相图化学
    • 2.1 Phase Changes of Solids, Liquids and Gases
    • 2.2 Differences between the Three States of Matter
    • 2.3 The Close Packed Solid
    • 2.4 Phase relations between individual solids
      • 2.4.1 Phase Diagram and Phase Chemistry
    • 2.5 One-component system单元系相图
    • 2.6 Binary system phase diagram 二元系相图—固溶体相图、合金相图
      • 2.6.1 Binary fully soluble phase diagram二元匀晶相图
      • 2.6.2 Eutectic Phase Diagram, Eutectoid Phase Diagram二元共晶、共析相图
      • 2.6.3 Peritectic Phase Diagram & Peritectoid Phase Diagram包晶和包析相图
      • 2.6.4 Stable Compound or Intermetallic Compound  形成稳定化合物或中间相的二元相图
      • 2.6.5 Basic Rules of  Binary System  二元相图的一些基本规律
    • 2.7 Ternary Phase Diagram 三元系相图
      • 2.7.1 三元相图的表示方法
      • 2.7.2 三元系平衡相的定量法则
      • 2.7.3 三元匀晶相图
      • 2.7.4 三元共晶相图
      • 2.7.5 Summary of ternary phase diagram
  • 3 第三章 固体结构测定
    • 3.1 Scientific determination of the structure of solids
    • 3.2 Bragg’s Equation
    • 3.3 Miller Indices
    • 3.4 Ewald and Reciprocal Lattice
    • 3.5 Energy Band Models
    • 3.6 Solid Structure Conventions and protocols
  • 4 Chapter 4 Defects in Solids
    • 4.1 Three kinds of Defects
      • 4.1.1 Types of point defects expected in a homogeneous
      • 4.1.2 The point defect in heterogeneous solids
      • 4.1.3 The line defect
      • 4.1.4 The Volume Defect
    • 4.2 Mathematic and equations of the points
      • 4.2.1 The Plane Net
    • 4.3 Non-stoichiometric solids
    • 4.4 Defect equation symbolism
    • 4.5 Some applications for defect chemistry
      • 4.5.1 Phosphors
      • 4.5.2 Defect equilibria and their energy
      • 4.5.3 Defect equilibria in various type of compounds
      • 4.5.4 Defect concentrations in MXs Compounds
  • 5 Mechanisms and Reactions in the Solid State
    • 5.1 Phase changes
    • 5.2 The role of phase boundaries in solid state reactions
    • 5.3 Reaction rate processes in solids
    • 5.4 Defining heterogeneous nucleation process
    • 5.5 Phase changes of solid state
    • 5.6 Fick’s Laws of Diffusion— Kinetics Equation of Diffusion
      • 5.6.1 Fick’s First Law
      • 5.6.2 Fick’s Second Law
      • 5.6.3 Driving force of Diffusion
    • 5.7 Diffusion Mechanism
      • 5.7.1 The Tarnishing Reaction
      • 5.7.2 Kirchendall Effect
      • 5.7.3 Types of diffusion reactions
    • 5.8 硅酸盐固相反应
      • 5.8.1 固相反应机理
      • 5.8.2 固相反应动力学
      • 5.8.3 影响固相反应的因素
    • 5.9 硅酸盐固相烧结
      • 5.9.1 烧结过程和机理
      • 5.9.2 烧结动力学
      • 5.9.3 影响固相烧结的因素
  • 6 Particles and Particle Technology
    • 6.1 Sequences in particle growth
    • 6.2 粒子径与粒度分布
      • 6.2.1 粒子径的表示方法
      • 6.2.2 粒度分布
      • 6.2.3 平均粒子径
      • 6.2.4 新建课程目录
    • 6.3 Particle size
    • 6.4 Measuring particle distributions
    • 6.5 Analysis of PD parameters
    • 6.6 Types of log normal particle distributions
    • 6.7 粒子形态
      • 6.7.1 形状指数
      • 6.7.2 形状系数
      • 6.7.3 粒子的比表面积
    • 6.8 粉体的密度与孔隙率
      • 6.8.1 粉体的密度
      • 6.8.2 粉体孔隙率
    • 6.9 Methods of measuring particle distributions
      • 6.9.1 Optical-The microscope-visual counting particles
  • 7 Growth of Crystals
    • 7.1 Methods of growth of crystals
    • 7.2 Furnace construction
      • 7.2.1 Elements of furnace design
    • 7.3 Steps in growing a single crystal
    • 7.4 Czochralski growth of single crystals
      • 7.4.1 Czochralski crystal growth parameters
      • 7.4.2 Operation of the Czohralski apparatus
      • 7.4.3 Defects produced in the growing crystal as a function of growth conditions
    • 7.5 The Bridge-Stockbarger Method for Crystal Growth
    • 7.6 Zone melting as a means for forming single crystals
    • 7.7 Zone refining
    • 7.8 The Vernuil method of crystal growth
  • 8 Plasma Chemistry
    • 8.1 等离子化学
      • 8.1.1 等离子体
      • 8.1.2 Plasma空间的各种现象—碰撞、激发、电离、复合、附着、离脱扩散和迁移
      • 8.1.3 低温等离子体的发生与放电特性
      • 8.1.4 等离子体化学的特征
      • 8.1.5 等离子体化学的应用—气—固相反应
      • 8.1.6 等离子体检测
    • 8.2 光化学
Differences between the Three States of Matter

2.2 Differences between theThree States of Matter

¡We will first show how these states differ physically from one another.

A.  The Gaseous State

¡Definition— a state of matter in which the substance expands readily to fill any containing vessel.---What this means is that any collection of molecules in the gaseous state is free to move in all directions and that the gaseous molecules will fill any container in which they are confined.

¡For the gaseous water molecule which has three atoms per molecule, the 3 vibrational degrees of freedom will have 7(2J+1=7) rotational states superimposed upon them. 

¡If the molecule happened to be NH3, then the expected number of vibrational states would be nine.

¡The exact region of the spectrum depending on the type of molecule present(i.e.-molecular weight).

¡Mean free path– the average distance that each molecule moves before collision. It is a function of both the temp. and the pressure of the gas. –This concept arose from the Kinetic Theory of Gases which in turn arose from Avagadro’s Hypothesis

¡It was Maxwell in 1848 who showed that molecules have a distribution of velocities and that they do not travel in a direct line.

¡Avogadro’s Number, 6.02204531x1023----Perrin and Einstein worked 

B. The Liquid state

¡In the liquid state, the molecules are still free to move in three dimensions but still have to beconfined in a container in the same manner as the gaseous state if we expect to be able to measure them.

¡The important differences between liquid andgas----there are energy removed from liquid molecule in order to get them to condense. The translational degrees of freedom are found to be restricted.—the molecules are much closer together and interact with one another. 

¡Result—The molecules of a liquid are not free to flow in any of the three directions, but are bound  by intermolecular forces.

¡For example, H—O—H : Dipole 

¡Note that in the above diagram there are still vibrational states but that the rotational states are “smeared” one into other. There is little translational motion for the water molecules within the interior of the liquid unless they escape from the liquid phase.

¡Evaporation---L-G

¡Sublimation---S-G

¡Most liquids do have a defined vapor pressure which means that molecules can and do escape from the surface of the liquid to form agas.

¡This is another reason that the properties of a liquid vary from those of the gaseous state.

¡Hence,we still have the vibrational and rotational degrees of freedom left in the liquid, but not those of the translational mode. 

¡Thus,we conclude that the molecules of a liquid are free to slide past one another but the overall assemblage of molecules does not have a definitive form, except that of the container used to hold it. 

¡Liquid definition—a substance or state of matter which has the capacity to flow under extremely small shear stresses to conform to the shape of any confining vessel, but is relatively incompressible and lacks the capacity to expand without limit.

¡Summary—As we change the state of matter, the translational degrees of freedom in liquids become severely restricted in relation to those of the gaseous state.  

¡而且,对液体而言,振动和转动自由度也受到一定限制.

C. The Solid State

¡In a molecular sense, the solid state is that the molecules become ordered

¡Another way to say is that they form a lattice-like framework

¡This is not the exact arrangement found in ice but is a stylized representation of the solid state of water.

¡It should be clear that as we change the state of matter, the translational degrees of freedom present in gases become restricted in liquids and disappear in solids.

¡The rotational states appear to be completely absent. It has been determined that solids have quite different vibrational states which are called “phonon modes”.

¡That is, the vibrations have clearly defined energy modes in the solid.

2.2.7 Number of branchesof phonon dispersion

¡For the solid state, there will be a specific number of phonon branches found in the vibrational spectrum of any given solid, which depends upon the number of atoms composing the solids. 

¡Acoustical=y atoms/molecule

¡Optical=3y-3

¡Phonon State: For water with 3 atoms per molecule

¡Acoustical=3

¡Optical=6

¡Phonon, 声子,点阵(晶格)振动能量的量子。它具有确定的能量和准动量。它的行为像一个粒子,所以它是准粒子。可以分为声学声子和光学声子,也可以分为横声子和纵声子。它的引入对处理有关晶格振动问题带来极大的方便。遵从玻色-爱因斯坦统计,在简谐近似下,声子可以按理想气体处理。而当光子、中子、电子等受到晶格作用时,看成它们与声子的碰撞作用来处理。

Summary of the majordifference

¡The major difference between the 3 phases we have discussed is that the solid consists of an assemblage of close-packed molecules which we have shown to have arisen when we removed enough energy from the molecules so as to cause them to condense and to form the solid state.