光电器件主要有:利用半导体光敏特性工作的光电导器件,利用半导体光生伏特效应工作的光电池和半导体发光器件等。半导体光电器件如光导管、光电池、光电二极管、光电晶体管等;半导体热电器件如热敏电阻、温差发电器和温差电致冷器等。
光电导器件:半导体材料的电导率是由载流子浓度决定的。载流子就是由半导体原子 逸出来的电子及其留下的空位----- 空穴。电子从原子中逃逸出来,必须克服原子的束缚力而做功,而光照正是向电子提供能量,使它有能力逃逸出来的一种形式。因此,光照可以改变载流子的浓度,从而改变半导体的电导率。光电导器件主要有光敏电阻、光电二极管光电三极管等。

光电器件的组成
1.光敏电阻
制作光电传感器用到最多的当属光敏电阻,光敏电阻在无光照的情况下电阻值比较高,当它受到光照的情况下,阻值下降跟多,导电性能明显加强.光敏电阻的主要参数有暗电阻,暗电流,与之对应的是亮电阻,亮电流.它们分别是在有光和无光条件下的所测的数值.亮电阻与暗电阻差值越大越好.在选择光敏电阻的时候还要注意它的光照特性,光谱特性.
2.光电二极管
光电二极管在无光照的条件下,其工作在截至状态,跟一般的二极管特性差不多,都具有单向导通性能.当受到光照时,PN区载流子浓度大大增加,载流子流动形成光电流.
3.光电三极管
光电三极管跟普通三极管的区别在于发射极的尺寸做得比较小,当光照的时候光电流差不多等于普通三极管的基极电流,光电三极管与光电二极管相比,灵敏更高.
4.光电池
实际当中用得比较多的光电池是硅光电池.它能够把光能直接转化成为电能.光电池的一个重要特点是短路时的电流与光照基本成线性比例.在运用中一般选择负载电阻很小.负载电阻越小,线形度愈好.
5.光电管
光电管一般分为真空光电管和充气光电管.充气光电管一般充氩气或氩氖混合气体,它们都属于惰性气体且原子量比较小.充气光电管不足的地方在于灵敏度衰减快.
6.光电倍增管
光电倍增管主要由阴极室跟二次发射倍增系统构成.光电倍增管的光电特性在光通量小的时候呈线性关系.由于光电倍增管暗电流的存在,限定了其测量时的最小范围.
利用光电效应还可以制造多种光电器件,如光电倍增管、电视摄像管、光电管、电光度计等,这里介绍一下光电倍增管。这种管子可以测量非常微弱的光。右下图是光电倍增管的大致结构,它的管内除有一个阴极K和一个阳极A外,还有若干个倍增电极K1.K2.K3.K4.K5等。使用时不但要在阴极和阳极之间加上电压,各倍增电极也要加上电压,使阴极电势最低,各个倍增电极的电势依次升高,阳极电势最高,这样,相邻两个电极之间都有加速电场,当阴极受到光的照射时,就发射光电子,并在加速电场的作用下,以较大的动能撞击到第一个倍增电极上,光电子能从这个倍增电极上激发出较多的电子,这些电子在电场的作用下,又撞击到第二个倍增电极上,从而激发出更多的电子,这样,激发出的电子数不断增加,最后后阳极收集到的电子数将比最初从阴极发射的电子数增加了很多倍(一般为105~108倍)。因而,这种管子只要受到很微弱的光照,就能产生很大电流,它在工程、天文、军事等方面都有重要的作用。
光电倍增管有放大光电流的作用,灵敏度非常高,信噪比大,线性好,多用于微光测量。
光电倍增管及其基本特性:

由阴极、次阴极(倍增电极)、阳极组成。
阴极由半导体光电材料锑铯做成,次阴极是在镍或铜-铍的衬底上涂上锑铯材料形成。次阴极可达3级。通常为12~14级。
使用时在各个倍增电极上均加上电压,阴极电位最低,以后依次升高,阳极最高。相邻两个倍增电极之间有电位差,因此存在加速电场。
光电管和光电倍增管同属于用外光电效应制成的光电转换器件。


