运动生理学

张翔 赵丽 亢建国 郭蓉

目录

  • 1 绪论
    • 1.1 导学
    • 1.2 绪论
    • 1.3 拓展学习
    • 1.4 本章测试
  • 2 运动的能量代谢
    • 2.1 导学
    • 2.2 第一节 生物能量学概要
    • 2.3 第二节 运动状态下的能量代谢
    • 2.4 拓展学习
    • 2.5 本章测试
  • 3 肌肉活动
    • 3.1 导学
    • 3.2 第一节 肌肉的特性
    • 3.3 第二节 肌肉收缩与舒张原理
    • 3.4 第三节 肌肉的收缩形式与力学特征
    • 3.5 第四节 肌纤维类型与运动能力
    • 3.6 拓展学习
    • 3.7 本章测试
  • 4 躯体运动的神经调控
    • 4.1 第一节 神经系统基本组件的一般功能
    • 4.2 第二节 神经系统的感觉分析功能
    • 4.3 第三节 躯体运动的脊髓和脑干调控
    • 4.4 第四节 高位中枢对躯体运动的调节
    • 4.5 拓展学习
    • 4.6 本章测试
  • 5 运动与内分泌
    • 5.1 第一节 概述
    • 5.2 第二节 主要内分泌腺的内分泌功能
    • 5.3 第三节 激素对运动的反应、适应与调节
    • 5.4 拓展学习
    • 5.5 本章测试
  • 6 运动与血液
    • 6.1 第一节 血液的组成与特性
    • 6.2 第二节 血液的功能
    • 6.3 第三节 运动对血液成分的影响
    • 6.4 拓展学习
    • 6.5 本章测试
  • 7 运动与呼吸
    • 7.1 第一节 肺通气
    • 7.2 第二节 气体的交换
    • 7.3 第三节 呼吸运动的调节
    • 7.4 拓展学习
    • 7.5 本章测试
  • 8 运动与血液循环
    • 8.1 第一节 心脏生理
    • 8.2 第二节 血管生理
    • 8.3 第三节 心血管活动的调节
    • 8.4 第四节 运动时心血管功能的变化
    • 8.5 拓展学习
    • 8.6 本章测试
  • 9 运动与免疫
    • 9.1 第一节 免疫学的基本知识和理论
    • 9.2 第二节 身体运动对免疫机能的影响
    • 9.3 第三节 运动免疫调理
  • 10 酸碱平衡
    • 10.1 第一节 酸碱物质
    • 10.2 第二节 酸碱平衡的调节
    • 10.3 第三节 运动时机体酸碱平衡的调节
  • 11 肌肉力量
    • 11.1 第一节 肌肉力量的生理学基础
    • 11.2 第二节 肌肉力量的训练
    • 11.3 第三节 肌肉力量的检测与评价
  • 12 有氧工作能力
    • 12.1 第一节 有氧耐力的生理学基础
    • 12.2 第二节 有氧耐力的训练
    • 12.3 第三节 有氧耐力的检测及其评定
  • 13 速度和无氧耐力
    • 13.1 第一节 速度
    • 13.2 第二节 无氧耐力
  • 14 平衡、灵敏与柔韧
    • 14.1 第一节 平衡
    • 14.2 第二节 灵敏
    • 14.3 ​第三节 柔韧
  • 15 运动过程中人体机能状态的变化
    • 15.1 第一节 赛前状态
    • 15.2 第二节 进入工作状态及稳定状态
    • 15.3 第三节 运动性疲劳
    • 15.4 第四节 恢复过程
  • 16 运动技能学习
    • 16.1 第一节 运动技能形成的生物学基础
    • 16.2 第二节 运动技能形成过程及发展
    • 16.3 第三节 运动技能学习过程中应注意的生理学问题
  • 17 年龄 女性与运动
    • 17.1 第一节 儿童少年与运动
    • 17.2 第二节 女子与运动
    • 17.3 第三节 老年人与运动
  • 18 肥胖与体重控制与运动处方
    • 18.1 第一节 肥胖与体成分
    • 18.2 第二节肥胖与运动减肥
  • 19 运动与环境
    • 19.1 第一节 冷热环境
    • 19.2 第二节 水环境
    • 19.3 第三节 高原环境
    • 19.4 第四节 大气环境
    • 19.5 第五节 生物节律
  • 20 运动生理学总复习
    • 20.1 运动生理学总复习
  • 21 绪论(英文版)
    • 21.1 Introduction
  • 22 肌肉的结构和功能(英文版)
    • 22.1 Chapter 1 Structure and Function of Exercising Muscle
  • 23 运动与能量代谢(英文版)
    • 23.1 Chapter 2 Fuel for Exercise Bioenergetics and Muscle Metabolism
  • 24 肌肉收缩的神经控制(英文版)
    • 24.1 Chapter 3  Neural Control of Exercising Muscle
  • 25 激素与运动(英文版)
    • 25.1 Chapter 4 Hormonal Control During Exercise
  • 26 能量消耗和疲劳(英文版)
    • 26.1 Chapter 5 Energy Expenditure and Fatigue
  • 27 心血管系统和运动(英文版)
    • 27.1 Chapter 6 The Cardiovascular System and Its Control Heart
  • 28 呼吸系统和运动(英文版)
    • 28.1 Chapter 7  The Respiratory System and Its Regulation
  • 29 心血管和呼吸系统对运动的反应(英文版)
    • 29.1 Chapter 8 Cardiorespiratory Responses to Acute Exercise
  • 30 运动训练的原则(英文版)
    • 30.1 Chapter 9 Principles of Exercise Training
Chapter 7  The Respiratory System and Its Regulation

Chapter 7 

The Respiratory System and Its Regulation

    The raspiratory and cardiovacular sysems combine to provide an efeccive delivery system that carries oxygen to,and removes carbon dioxide from, all tissues of the body.

This transportation involves four separate processes:

Pulmonary ventilation (breathing): movement of air into and out of the lungs

Pulmonary diffusion: the exchange of oxygen and carbon dioxide between the lungs and the blood

Transport of oxygen and carbon dioxide via the blood

Capillary diffusion: the exchange of oxygen and carbon dioxide between the capillary blood and metabolically active tissues

The first two processes are referred to as external respiration because they involve moving gases from outside the body into the lungs and then the blood. Once the gases are in the blood, they must be transported to the tissues. When blood arrives at the tissues, thefourth step of respiration occurs. This gas exchange between the blood and the tissues is called internal respiration. Thus, external and internal respiration are linked by the circulatory system. The following sections examine all four components of respiration.

In Review

Pulmonary ventilation (breathing) is the process by which air is moved into and out of the lungs. It has two phases: inspiration and expiration.

Inspiration is an active process in which the diaphragm and the external intercostal muscles contract, increasing the dimensions, and thus the volume, of the thoracic cage. This decreases the pressure in the lungs, causing air to flow in.

Expiration at rest is normally a passive process. The inspiratory muscles and diaphragm relax and the elastic tissue of the lungs recoils, returning the thoracic cage to its smaller, normal dimensions. This increases the pressure in the lungs and forces air out.

The pressure changes required for ventilation at rest are small, as little as 2 to 3mmHg. However, during maximal respiratory effort the intrapulmonary pressure can decrease by 80 to 100 mmHg.

Forced or labored inspiration and expiration are active processes and involve accessory muscle actions.

Breathing through the nose helps humidify and warm the air during inhalation and filters out foreign particles from the air. Mouth breathing dominates at moderate to high exercise intensities.

Lung volumes and capacities, along with rates of airflow into and out of the lungs, are measured by spirometry.

In Review

Pulmonary diffusion is the process by which gases are exchanged across the respiratory membrane in the alveoli.

Dalton's law states that the total pressure of a mixture of gases equals the sum of the partial pressures of the individual gases in that mixture.

The amount and rate of gas exchange that occur across the membrane depend primarily on the partial pressure of each gas, although other factors are also important, as shown by Fick's law. Gases diffuse along a pressure gradient, moving from an area of higher pressure to one of lower pressure. Thus, oxygen enters the blood and carbon dioxide leaves it.

Oxygen diffusion capacity increases as one moves from rest to exercise. When exercising muscles require more oxygen to be used in the metabolic processes, venous oxygen is depleted and oxygen exchange at the alveoli is facilitated.

The pressure gradient for carbon dioxide exchange is less than for oxygen exchange, but carbon dioxide's diffusion coefficient is 20 times greater than that of oxygen, so carbon dioxide crosses the membrane readily without a large pressure gradient.


In Review

Oxygen is transported in the blood primarily bound to hemoglobin (aoxyhemoglobin), although a small part of it is dissolved in plasma.

To better respond to increased oxygen demand, hemoglobin unloading of oxygen(desaturation) is enhanced (i.e., the curve shifts to the tight) when PO2decreases, pH decreases, or temperature increases.

Because of the sigmoid shape of the curve, loading of hemoglobin with oxygen in the lungs is only minimally affected by the shift.

In the arteries, hemoglobin is usually about 98% saturated with oxygen. This is a higher oxygen content than our bodies require, so the blood's oxygen- carrying capacity seldom limits peformance in healthy individuals.

Carbon dioxide is transported in the blood primarily as bicarbonate ion. This prevents the formation of carbonic acid, which can cause H* to accumulate and lower the pH. Smaller amounts of carbon dioxide are either dissolved in the plasma or bound to hemoglobin.

Regulation of Pulmonary entilation


Study Questions

1.Describe and differentiate between external and internal respiration.

2.Describe the mechanisms involved in inspiration and expiration.

3.What is a spirometer? Describe and define the lung volumes measured using spirometry.

4.Explain the concept of partial pressures of respiratory gases -oxygen, carbon dioxide, and nitrogen. What is the role of gas partial pressures in pulmonary diffusion?

5. Where in the lung does the exchange of gases with the blood occur? Describe the role of the respiratory membrane.

6.How are oxygen and carbon dioxide transported in the blood?

7.How is oxygen unloaded from the arterial blood to the muscle and carbon dioxide removed from the muscle into the venous blood?

8.What is meant by the arterial- mixed venous oxygen difference? How and why does this change from resting conditions to exercise conditions?

9.Describe how pulmonary ventilation is regulated. What are the chemical stimuli that control the depth and rate of breathing? How do they control respiration during exercise?