目录

  • 1 金属物理学
    • 1.1 绪论
  • 2 金属的结构
    • 2.1 结构概述
    • 2.2 几种典型的金属结构
    • 2.3 金属的原子半径
    • 2.4 原子的结合与结合能
    • 2.5 液态金属与非晶态金属的结构
  • 3 金属结构的理论
    • 3.1 概述
    • 3.2 经验或半经验理论
      • 3.2.1 经验的原子相互作用
      • 3.2.2 化学键理论
    • 3.3 金属电子论
      • 3.3.1 自由电子理论
      • 3.3.2 电子能带理论
  • 4 合金的结构
    • 4.1 合金概述
    • 4.2 固溶体
    • 4.3 金属化合物
    • 4.4 非周期结构合金
  • 5 合金理论
    • 5.1 概述
    • 5.2 合金的热力学与统计理论
    • 5.3 合金的电子理论
  • 6 晶体的缺陷
    • 6.1 缺陷概述
    • 6.2 点缺陷
    • 6.3 线缺陷
    • 6.4 面缺陷
    • 6.5 新建课程目录
  • 7 金属中的原子迁移(扩散)
    • 7.1 概述
    • 7.2 扩散的唯象理论
    • 7.3 扩散微观机制
    • 7.4 外场作用下的原子扩散问题
  • 8 相变
    • 8.1 相变概述
    • 8.2 相变的分类
    • 8.3 相变的动力学理论
    • 8.4 相变的微观理论
  • 9 金属的性质
    • 9.1 金属的力学性能
    • 9.2 金属的物理性能和化学性能
    • 9.3 金属的工艺性能
液态金属与非晶态金属的结构


液体的宏观特征是其具有流动性。液态金属是指一种不定型金属,液态金属可看作由正离子流体和自由电子气组成的混合物。液态金属也是一种不定型、可流动的金属。

非晶态 noncrystalline,又称无定形态或玻璃态,是指物体内部原子或分子的排列无周期性,这种非周期性常常表现为具有短程有序但长程无序的特点。非晶态金属是指在原子尺度上结构无序的一种金属材料。

从物体的原子结构的层面来看,液态和非晶态都共同表现为原子在空间的排列具有无序性,在这个意义上,非晶态与液态是一致的,即液态金属与非晶态金属在结构上属于同一类系统。但液态系统具有流动性;非晶态固体不具有流动性。

                   

大部分金属材料具有很高的有序结构,原子呈现周期性排列(晶体),表现为平移对称性,或者是旋转对称,镜面对称,角对称(准晶体)等。而与此相反,非晶态金属不具有任何的长程有序结构,但具有短程有序和中程有序(中程有序正在研究中)。一般地,具有这种无序结构的非晶态金属可以从其液体状态直接冷却得到,故又称为"玻璃态"。所以,非晶态金属又称为"金属玻璃"(Glassy metal、Metallic Glass)、"玻璃态金属"、"液态金属"(Liquid metal)或大块金属玻璃(Bulk Metallic Glass,BMG)是一种具有较低冷却速度极限的非晶态金属,所以该种金属合金可以制备出尺度超过1毫米的金属片或金属圆柱。制备非晶态金属的方法包括:物理气相沉积、固相烧结法、离子辐射法、甩带法(连续铸造法中的一种)和机械法。

发展历史

1960年,W. Klement (Jr.), Willens 和Duwez首次制备观察到了世界上第一块金属玻璃材料-- (Au75Si25)合金。早期发现具有玻璃形成能力的合金均是在急速冷却下制备(降温速率在1百万开尔文每秒, 10K/s),阻碍结晶过程。 为了达到冷却速率阈值,这类材料的形貌在某个维度上要足够小,典型的如带状、箔状、线状等,其厚度要小于100微米。

1969年,发现合金77.5%钯、6%铜、16.5%硅的玻璃化临界降温速率仅在 100 到 1000 K/s之间。

1976年, H. Liebermann 和 C. Graham 发展一类新型非晶金属制备方法,通过单辊甩带机实现骤冷实验中采用的合金由铁、镍、和硼构成。在1980年代初投入商业应用,是低损耗输电变压器的核心构件(非晶合金变压器)

80年代初,通过热冷循环处理后的表面刻蚀,Pd55Pb22.5Sb22.5合金形成的玻璃态块材直径达到5毫米。

1988年,发现镧系、铝系和铜系合金有着较高的玻璃形成能力。

90年代,新型合金的玻璃态临界降温速率降至1K/s。这一降温速率在普通的模具浇铸法中即可实现。 这些块状的非晶合金铸件厚度可达数厘米(最大厚度与合金种类相关)。

玻璃形成能力最强的合金来自锆系和钯系。铁系、钛系、铜系、镁系等合金的也具备玻璃形成能力。 许多非晶合金的形成借助了一类的"混合效应"。


应用

无定形的结构使非晶态金属具有许多比普通晶态金属优异的性能。特别是近十年来,由于生产非晶态条带的各种工艺取得进展,已有不少性能可靠的产品,使其有可能在工程上实际应用。

由于铁基非晶态金属不具长程有序结构,其磁化及消磁均较一般磁性材料容易。因此,以铁基非晶合金作为磁芯的非晶合金变压器,铁损(即空载损耗)要比一般采用硅钢作为铁芯的传统变压器低70-80%,对电网节能降耗有积极作用。

非晶态金属的磁导率高、矫顽力低等,加上它的高硬度和强度,是很好的磁头材料,其性能和寿命均优于普通的晶态合金。非晶态金属还具有零或负电阻温度系数的特点,可用来制作电阻器件。非晶态合金的发展方兴未艾。