复变函数

林国

目录

  • 第一章 复数与复变函数
    • ● 第一节 复数
    • ● 第二节 复平面上的点集
    • ● 第三节 复变函数
    • ● 第四节 复球面与无穷远点
    • ● 第五节 复习与习题课
  • 第二章 解析函数
    • ● 第一节 解析函数的概念与柯西-黎曼方程
    • ● 第二节 初等解析函数
    • ● 第三节 初等多值函数
    • ● 第四节 复习与习题课
  • 第三章 复变函数的积分
    • ● 第一节 复积分的概念及其简单性质
    • ● 第二节 柯西积分定理
    • ● 第三节 柯西积分公式及其推论
    • ● 第四节 解析函数与调和函数的关系
    • ● 第五节 复习与习题课
  • 第四章 解析函数的幂级数表示法
    • ● 第一节 复级数的基本性质
    • ● 第二节 幂级数
    • ● 第三节 解析函数的泰勒(Taylor)展式
    • ● 第四节 解析函数零点的孤立性及惟一性定理
    • ● 第五节 复习与习题课
  • 第五章 解析函数的洛朗展示与孤立奇点
    • ● 第一节 解析函数的洛朗展式
    • ● 第二节 解析函数的孤立奇点
    • ● 第三节 解析函数在无穷远点的性质
    • ● 第四节 整函数与亚纯函数的概念
    • ● 第五节 复习与习题课
  • 第六章 留数理论及其应用
    • ● 第一节 留数
    • ● 第二节 用留数定理计算实积分
    • ● 第三节 辐角原理及其应用
    • ● 第四节  复习与习题课
  • 第七章 共形映射
    • ● 第一节 解析变换的特征
第三节 初等多值函数

本节将在指数函数和三角函数以及乘方运算基础上,通过反函数等方法引入一些多值函数,主要内容包括:1.根式函数 2.对数函数 3.一般幂函数与一般指数函数 4.具有多个有限支点的情形 5.反三角函数与反双曲函数。

学习过程除了与函数值有关的基本计算以外,要特别注意多值性的起源与幅角的关联,理解部分函数中可能支点与割线的选取与判定。

本节知识学习之后要对根式与多项式的复合运算可以判定支点与割线,可以通过给定点或者范围(例如割线上沿)的函数值写出同一解析分支上其他点的函数值。