材料力学

赵彬

目录

  • 1 绪论
    • 1.1 教学目标
    • 1.2 材料力学的研究对象
    • 1.3 材料力学的任务
    • 1.4 变形固体的基本假设
    • 1.5 材料力学的基本概念
    • 1.6 杆件变形的基本形式
    • 1.7 材料力学研究问题的方法
    • 1.8 本章测验
  • 2 拉伸和压缩
    • 2.1 教学目标
    • 2.2 轴向拉压的概念及实例
    • 2.3 拉压时的内力、应力
    • 2.4 材料在拉伸和压缩时的力学性能
    • 2.5 拉压杆的强度条件
    • 2.6 拉压杆的变形
    • 2.7 拉压超静定问题
    • 2.8 拉压杆的弹性应变能
    • 2.9 应力集中的概念
    • 2.10 本章测验
  • 3 剪切
    • 3.1 教学目标
    • 3.2 剪切与挤压的实用计算
    • 3.3 薄壁圆筒的扭转
    • 3.4 切应力互等定理
    • 3.5 剪切应变能
    • 3.6 本章测试
  • 4 扭转
    • 4.1 教学目标
    • 4.2 扭转的概念和实例
    • 4.3 外力偶矩、扭矩和扭矩图
    • 4.4 圆轴扭转时的应力、强度条件
    • 4.5 圆轴扭转时的变形、刚度条件
    • 4.6 矩形截面杆扭转理论简介
    • 4.7 本章测验
  • 5 弯曲内力
    • 5.1 教学目标
    • 5.2 平面弯曲的概念及梁的计算简图
    • 5.3 梁的剪力和弯矩
    • 5.4 剪力方程和弯矩方程 ·剪力图和弯矩图
    • 5.5 剪力、弯矩与分布荷载集度间的关系及应用
    • 5.6 平面刚架和曲杆的内力图*
    • 5.7 本章测验
  • 6 弯曲应力
    • 6.1 教学目标
    • 6.2 平面弯曲时梁横截面上的正应力
    • 6.3 梁横截面上的切应力
    • 6.4 梁的正应力和切应力强度条件
    • 6.5 提高梁强度的措施
    • 6.6 本章测验
  • 7 弯曲变形
    • 7.1 教学目标
    • 7.2 梁的挠曲线近似微分方程
    • 7.3 积分法求梁的位移
    • 7.4 叠加法求梁的位移
    • 7.5 梁的刚度校核
    • 7.6 梁的弯曲应变能
    • 7.7 简单超静定梁的解法
    • 7.8 提高梁弯曲刚度的措施
    • 7.9 本章测验
  • 8 应力状态分析 强度理论
    • 8.1 教学目标
    • 8.2 应力状态的概念
    • 8.3 平面应力状态分析——解析法
    • 8.4 平面应力状态分析——应力圆法
    • 8.5 空间应力状态简介
    • 8.6 平面应变状态分析
    • 8.7 广义胡克定律
    • 8.8 复杂应力状态下的变形比能
    • 8.9 强度理论及应用
    • 8.10 本章测验
  • 9 组合变形
    • 9.1 教学目标
    • 9.2 组合变形与叠加原理
    • 9.3 斜弯曲
    • 9.4 拉(压)弯组合  偏心拉伸(压缩)
    • 9.5 弯曲与扭转组合
    • 9.6 本章测验
  • 10 压杆稳定
    • 10.1 教学目标
    • 10.2 压杆稳定的基本概念
    • 10.3 细长压杆的临界力
    • 10.4 压杆的临界应力
    • 10.5 压杆的稳定计算
    • 10.6 本章测验
  • 11 动载荷
    • 11.1 教学目标
    • 11.2 动载荷
    • 11.3 本章测验
  • 12 交变应力
    • 12.1 教学目标
    • 12.2 交变应力
    • 12.3 本章测验
  • 13 平面图形的几何性质
    • 13.1 教学目标
    • 13.2 静矩与形心
    • 13.3 惯性矩、极惯性矩、惯性积
    • 13.4 惯性矩的平行移轴公式
    • 13.5 本章测验
  • 14 材料力学实验
    • 14.1 教学目标
    • 14.2 金属材料的拉伸实验
    • 14.3 金属材料的压缩实验
    • 14.4 弯曲正应力实验
    • 14.5 实验报告
    • 14.6 本章测验
  • 15 附录
    • 15.1 参考教材(吕建国)
    • 15.2 123章测验题讲解
    • 15.3 材料力学总结
空间应力状态简介
  • 1 内容
  • 2 PPT
  • 3 视频

空间应力状态下的最大正应力和最大切应力

已知三个主应力:σ123,分别作与三个主应力平行截面上的应力圆,如图所示。

 

可以证明任意斜载面上的应力与阴影部分内的一点的坐标相对应,即三个应力圆圆周上的点及由它们围成的阴影部分上的点的坐标代表了空间应力状态下所有截面上的应力。

该点处的最大正应力(指代数值)应等于最大应力圆上A点的横坐标s1即第一主应力。

最大切应力则等于最大的应力圆的半径,即:

最大切应力所在的截面与s2所在的主平面垂直,并与s1s3所在的主平面成45°角。