材料力学

赵彬

目录

  • 1 绪论
    • 1.1 教学目标
    • 1.2 材料力学的研究对象
    • 1.3 材料力学的任务
    • 1.4 变形固体的基本假设
    • 1.5 材料力学的基本概念
    • 1.6 杆件变形的基本形式
    • 1.7 材料力学研究问题的方法
    • 1.8 本章测验
  • 2 拉伸和压缩
    • 2.1 教学目标
    • 2.2 轴向拉压的概念及实例
    • 2.3 拉压时的内力、应力
    • 2.4 材料在拉伸和压缩时的力学性能
    • 2.5 拉压杆的强度条件
    • 2.6 拉压杆的变形
    • 2.7 拉压超静定问题
    • 2.8 拉压杆的弹性应变能
    • 2.9 应力集中的概念
    • 2.10 本章测验
  • 3 剪切
    • 3.1 教学目标
    • 3.2 剪切与挤压的实用计算
    • 3.3 薄壁圆筒的扭转
    • 3.4 切应力互等定理
    • 3.5 剪切应变能
    • 3.6 本章测试
  • 4 扭转
    • 4.1 教学目标
    • 4.2 扭转的概念和实例
    • 4.3 外力偶矩、扭矩和扭矩图
    • 4.4 圆轴扭转时的应力、强度条件
    • 4.5 圆轴扭转时的变形、刚度条件
    • 4.6 矩形截面杆扭转理论简介
    • 4.7 本章测验
  • 5 弯曲内力
    • 5.1 教学目标
    • 5.2 平面弯曲的概念及梁的计算简图
    • 5.3 梁的剪力和弯矩
    • 5.4 剪力方程和弯矩方程 ·剪力图和弯矩图
    • 5.5 剪力、弯矩与分布荷载集度间的关系及应用
    • 5.6 平面刚架和曲杆的内力图*
    • 5.7 本章测验
  • 6 弯曲应力
    • 6.1 教学目标
    • 6.2 平面弯曲时梁横截面上的正应力
    • 6.3 梁横截面上的切应力
    • 6.4 梁的正应力和切应力强度条件
    • 6.5 提高梁强度的措施
    • 6.6 本章测验
  • 7 弯曲变形
    • 7.1 教学目标
    • 7.2 梁的挠曲线近似微分方程
    • 7.3 积分法求梁的位移
    • 7.4 叠加法求梁的位移
    • 7.5 梁的刚度校核
    • 7.6 梁的弯曲应变能
    • 7.7 简单超静定梁的解法
    • 7.8 提高梁弯曲刚度的措施
    • 7.9 本章测验
  • 8 应力状态分析 强度理论
    • 8.1 教学目标
    • 8.2 应力状态的概念
    • 8.3 平面应力状态分析——解析法
    • 8.4 平面应力状态分析——应力圆法
    • 8.5 空间应力状态简介
    • 8.6 平面应变状态分析
    • 8.7 广义胡克定律
    • 8.8 复杂应力状态下的变形比能
    • 8.9 强度理论及应用
    • 8.10 本章测验
  • 9 组合变形
    • 9.1 教学目标
    • 9.2 组合变形与叠加原理
    • 9.3 斜弯曲
    • 9.4 拉(压)弯组合  偏心拉伸(压缩)
    • 9.5 弯曲与扭转组合
    • 9.6 本章测验
  • 10 压杆稳定
    • 10.1 教学目标
    • 10.2 压杆稳定的基本概念
    • 10.3 细长压杆的临界力
    • 10.4 压杆的临界应力
    • 10.5 压杆的稳定计算
    • 10.6 本章测验
  • 11 动载荷
    • 11.1 教学目标
    • 11.2 动载荷
    • 11.3 本章测验
  • 12 交变应力
    • 12.1 教学目标
    • 12.2 交变应力
    • 12.3 本章测验
  • 13 平面图形的几何性质
    • 13.1 教学目标
    • 13.2 静矩与形心
    • 13.3 惯性矩、极惯性矩、惯性积
    • 13.4 惯性矩的平行移轴公式
    • 13.5 本章测验
  • 14 材料力学实验
    • 14.1 教学目标
    • 14.2 金属材料的拉伸实验
    • 14.3 金属材料的压缩实验
    • 14.4 弯曲正应力实验
    • 14.5 实验报告
    • 14.6 本章测验
  • 15 附录
    • 15.1 参考教材(吕建国)
    • 15.2 123章测验题讲解
    • 15.3 材料力学总结
材料力学的研究对象
  • 1 内容
  • 2 PPT
  • 3 视频

材料力学的研究对象为“细长结构”,“细长”是指研究对象的几何特征,指研究物体的尺寸在一个方向上远大于另外两个方向。“结构”作为力学术语侧重于它具有一定的承载能力。细长结构是大自然中存在最为广泛的结构之一,也是人类最早认识和使用的典型结构之一,在人类早期的工具中有许多属于细长结构,如棍棒、骨针,石刀、石斧、石矛的把等等,许多复杂结构也多利用细长结构搭建而成。

在材料力学中,根据受力特点,细长结构被区分为杆、梁、轴三种典型模型。杆分拉杆和压杆两种情况,在工程上,对于一些在结构中起支撑作用而受压力的杆也被称为柱。轴是指在细长结构内只存在扭矩的情况。梁则主要指承受弯曲作用的细长结构。

需要特别强调的是,材料力学中的杆、轴、梁虽然来源于工程概念,与工程有深刻的联系,但它们并不等同于工程,而是代表特定受力条件下的力学模型。前面我们提到的实际上就是一种工程名称,在力学上柱的本质是受压杆件。同样是柱,当柱是竖直情况时,我们认为它的自重是沿着轴向向下传递,柱受压力;但当柱倾斜后,在柱身内就会产生弯矩,就具有了梁的特征。

尽管材料力学将细长结构分成杆、轴、梁三种简单模型,但所学知识经过组合后可以解决复杂的工程问题。