一、神经元的结构
1. 胞体 神经元的营养和代谢中心。主要位于大脑和小脑皮质、脑干和脊髓灰质以及神经节内;有圆形、锥形、梭形和星形等,其大小相差悬殊,直径为5~150µm;均由细胞膜、细胞质和细胞核构成。
(1)细胞核:位于胞体中央,大而圆,着色浅,核仁明显。
(2)细胞质:光镜下有两个特征性结构:尼氏体和神经原纤维。
尼氏体(Nissl body):具强嗜碱性,均匀分布;在大神经元,如脊髓运动神经元,呈粗大斑块状,在小神经元,如神经节内的神经元,呈细颗粒状。电镜下,尼氏体有发达的粗面内质网和游离核糖体,表明神经元具有活跃的蛋白质(细胞器所需的结构蛋白、合成神经递质的酶类、神经调质)合成功能。神经递质(neurotransmitter)是神经元向其它神经元或效应细胞传递的化学信息载体,一般为小分子物质,主要在胞体合成后以小泡的形式贮存于神经元的末端。神经调质(neuromodulator)一般为肽类,调节神经元对神经递质的反应。



脊髓前角运动神经元(HE)
神经原纤维(neurofibril):在HE染色切片无法分辨。在镀银染色切片中, 呈棕黑色细丝,交错排列成网,并伸入树突和轴突。电镜下由神经丝、微管和微丝构成。神经丝是由神经丝蛋白构成的一种中间丝,它们除了构成神经元的细胞骨架外,微管还参与物质运输。
脊髓前角运动神经元(镀银染色)
(3)细胞膜:膜中镶嵌的蛋白质有些是离子通道,如Na、K、Ca、CI通道,有些膜蛋白是受体,与相应的神经递质结合后,可使某种离子通道开放。故神经元细胞膜为可兴奋膜,具有接受刺激、处理信息、产生并传导神经冲动的功能。
2.树突(dendrite)每个神经元有一至多个树突,分支多、短,呈树枝状,分支上有大量短小突起,称树突棘(dendritic spine),树突内胞质的结构与胞体相似。树突的功能主要是接受刺激。
3.轴突(axon)每个神经元只有一条轴突,一般由胞体发出,短者仅数微米,长者可达1米以上。光镜下胞体发出轴突的部位常呈圆锥形,称轴丘(axon hillock),此区无尼氏体,故染色淡。轴突一般比树突细,直径较均一,有侧支呈直角分出。轴突末端分支较多,形成轴突终末。轴突表面的胞膜称轴膜(axolemma),内含的胞质称轴质(axoplasm)。轴突内含大量神经丝和微管,还有滑面内质网、微丝、线粒体和突触小泡等。轴突内无尼氏体,电镜下无粗面内质网和游离核糖体,故不能合成蛋白质。
轴突起始段轴膜较厚,膜下有电子密度高的致密层。此段轴膜易引起电兴奋,常是神经元产生神经冲动的起始部位。产生冲动, 沿轴膜向终末传递。神经冲动形成后沿轴膜向终末传递,因此轴突的主要功能是传导神经冲动。
轴突内的物质运输称轴突运输(axonal transport)。胞体内新形成的神经丝、微丝和微管缓慢向轴突终末延伸,称慢速轴突运输。此外还有快速轴突运输(双向)。如轴膜更新所需的蛋白质、合成神经递质的酶、含神经递质或神经调质的小泡等,由胞体向轴突终末快速输送,称快速顺向轴突运输。轴突终末内的代谢产物或由轴突终末摄取的物质逆向运输到胞体,称快速逆向轴突运输。某些病毒或毒素(如狂犬病毒、脊髓灰质炎病毒和破伤风毒素)也可通过此运输侵犯神经元胞体。
二、神经元分类
1.按神经元的突起数量 分为三类。①多极神经元(multipolar neuron):有一个轴突和多个树突。②双极神经元(bipolar neuron):有轴突和树突各一个。③假单极神经元(pseudounipolar neuron):从胞体发出一个突起,但在不远处呈T形分为两支,一支进入中枢神经系统,称中枢突( 传出神经冲动,为轴突);另一支分布到周围的其他器官,称周围突(接受刺激,具有树突的功能;结构与轴突相似)。

2.按神经元轴突的长短 分为两型。①高尔基I 型神经元(Golgi type I neuron):是具有长轴突(可长达1米以上)的大神经元;②高尔基II 型神经元(Golgi type II neuron):是具有短轴突(仅数微米)的小神经元。(多)
3.按神经元的功能 可分为三类。①感觉神经元(sensory neuron):又称传入神经元(afferent neuron),多为假单极神经元。②运动神经元(motor neuron):又称传出神经元(efferent neuron),一般为多极神经元。③中间神经元(interneuron):主要为多极神经元,位于前两种神经元之间,加工和传递信息;占神经元总数99%以上。

4.按神经元释放的神经递质和调质的化学性质进行分类 ①胆碱能神经元:释放乙酰胆碱;②去甲肾上腺素能神经元:释放去甲肾上腺素; ③胺能神经元:释放多巴胺、5-羟色胺等; ④氨基酸能神经元:释放Υ-氨基丁酸、甘氨酸、谷氨酸等; ⑤肽能神经元:释放神经肽(脑啡肽、P物质、神经降压素等),一氧化氮(NO)和一氧化碳也是神经递质。一般一个神经元只释放一种神经递质,同时还可释放
突触(synapse)
神经元与神经元之间,或神经元与非神经细胞之间的一种特化的细胞连接称为突触。通过它的传递作用实现细胞与细胞之间的通讯。在神经元之间的连接中,最常见是一个神经元的轴突终末与另一个神经元的树突、树突棘或胞体连接,分别构成轴-树(axodendritic)、轴-棘(axospinous)、轴-体(axosomatic)突触。突触可分为化学突触(chemical synapse)和电突触(electrical synapse)两大类。前者是以化学物质(神经递质)作为通讯的媒介,后者是亦即缝隙连接,是以电流(电讯号)传递信息。哺乳动特神经系统以化学突触占大多数,通常所说的突触是指化学突触而言。

神经元及其突触超微结构模式图

神经元胞体表面的突触小体 (镀银染色)

突触超微结构模式图
电镜下,突触的结构可分突触前成分(presynaptic element)、突触间隙(synaptic cleft)和突触后成分(postsynaptic element)三部分。突触前、后成分彼此相对的细胞膜分别称为突触前膜和突触后膜(presynaptic and postsynaptic membrane),两者之间有宽约15~30nm的狭窄间隙为突触间隙,内含糖蛋白和一些细丝。突触前成分通常是神经元的轴突终末,呈球状膨大,它们在银染色标本中呈现为棕黑色的环扣状,附着在另一神经元的胞体或树突上,称突触扣结(synaptic bouton)。
突触前成分内内含许多突触小泡(synapse vesicle),还有少量线粒体、滑面内质网、微管和微丝等。突触小泡的大小和形状不一,多为圆形,直径40~60nm,亦有的呈扁平形。突触小泡有的清亮,有的含有致密核芯(颗粒型小泡),大的颗粒型小泡直径可达200nm。突触小泡内含神经递质或神经调质。突触前膜和后膜均比一般细胞膜略厚,这是由于其胞质面附有一些致密物质所致。在突触前膜还有电子密度高的锥形致密突起(dense projection)突入胞质内,突起间容纳突触小泡。突触小泡表面附有突触小泡相关蛋白,称突触素(synapsin),它使突触小泡集合并附在细胞骨架上。突触前膜上富含电位门控通道,突触后膜上则富含受体及化学门控通道。
当神经冲动沿轴膜传至轴突终末时,即触发突触前膜上的电位门控钙通道开放,细胞外的Ca2+进入突触前成分,在ATP的参与下使突触素I发生磷酸化,促使突触小泡移附在突触前膜上,通过出胞作用释放小泡内的神经递质到突触间隙内。其中部分神经递质与突触后膜上相应受体结合,引起与受体偶联的化学门控通道开放,使相应离子进出,从而改变突触后膜两侧离子的分布状况,出现兴奋或抑制性变化,进而影响突触后神经元(或非神经细胞)的活动。使突触后膜发生兴奋的突触称兴奋性突触(excitatory synapse),使突触后膜发生抑制的称抑制性突触(inhibitory synapse)。突触的兴奋或抑制,取决于神经递质及其受体的种类。
一个神经元既可与其他神经元建立许多突触连接,亦可接受来自其他神经元的许多突触信息。一个神经元上突触数目的多少视不同的神经元而有很大差别,例如小脑的颗粒细胞只有几个突触,一个运动神经元要有1万个左右突触,而小脑的蒲肯野细胞树突上的突触就有10万个以上。一个神经元上众多的突触中,有些是兴奋性的,有些则是抑制性的。如果所有兴奋性突触活动的总和超过抑制性突触活动的总和,并足以刺激该神经元的轴突起始段产生动作电位时,则该神经元发生兴奋;反之,则表现为抑制。
(一)中枢神经系统的胶质细胞




1.星形胶质细胞 星形胶质细胞(astrocyte)是胶质细胞中体积最大的一种,与少突胶质细胞合称为大胶质细胞(macroglia)。细胞呈星形,核圆形或卵圆形,较大,染色较浅。星形胶质细胞可分两种:①纤维性星形胶质细胞(fibrous astrocyte),多分布在白质,细胞的突起细长,分支较少,胞质内含大量胶质丝(glial fiament)。组成胶质丝的蛋白质称胶质原纤维酸性蛋白(glial fibrillary acidic protein,GFAP),用免疫细胞化学染色技术,能特异性地显示这类细胞。②原浆性星形胶质细胞(protoplasmic astrocyte),多分布在灰质,细胞的突起较短粗,分支较多,胞质内胶质丝较少。星形胶质细胞的突起伸展充填在神经元胞体及其突起之间,起支持和分神经元的作用。有些突起末端形成脚板(end feet)附着在脑和脊髓表面形成胶质界膜(glia limitans),或附在毛细血管壁上,构成血脑屏障的神经胶质膜。
星形胶质细胞之间的细胞间隙狭窄而迂回曲折,宽约15~20nm,内含组织液,神经元借此进行物质交换,星形胶质细胞能吸收细胞间隙的K+,以维持神经元周围环境K+含量的稳定性,它还能摄取和代谢某些神经递质(如γ-氨基丁酸等),调节细胞间隙中神经递质的浓度,有利神经元的活动。在神经系统发育时期,某些星形胶质细胞具有引导神经元迁移的作用,使神经元到达预定区域并与其他细胞建立突触连接。中枢神经系统损伤时,星形胶质细胞增生、肥大、充填缺损的空隙,形成胶质瘢痕(glial scar)。
2.少突胶质细胞 在银染色标本中,少突胶质细胞(oligodendrocyte)的突起较少,但用特异性的免疫细胞化学染色,是可见少突胶质细胞的突起并不很少,而且分支也多。少突胶质细胞的胞体较星形胶质细胞的小,核圆,染色较深。胞质内胶质丝很少,但有较多微管和其他细胞器。少突胶质细胞分布在神经元胞体附近和神经纤维周围,它的突起末端扩展成扁平薄膜,包卷神经元的轴突形成髓鞘,所以它是中枢神经系统的髓鞘形成细胞。新近研究认为,少突胶质细胞还有抑制再生神经元突起生长的作用。
3.小胶质细胞 小胶质细胞( microglia)是胶质细胞中最小的一种。胞体细长或椭圆,核小,扁平或三角形,染色深。细胞的突起细长有分支,表面有许多小棘突。小胶质细胞的数量少,约占全部胶质细胞的5%左右。中枢神经系统损伤时,小胶质细胞可转变为巨噬细胞,吞噬细胞碎屑及退化变性的髓鞘。血循环中的单核细胞亦侵入损伤区,转变为巨噬细胞,参与吞噬活动。由于小胶质细胞有吞噬功能,有人认为它来源于血液中的单核细胞,属单核吞噬细胞系统。
4.室管膜细胞 室管膜细胞(ependymal cell)为立方或柱形,分布在脑室及脊髓中央管的腔面,形成单层上皮,称室管膜(ependyma)。室管膜细胞表面有许多微绒毛,有些细胞表面有纤毛。某些地方的室管膜细胞,其基底面有细长的突起伸向深部,称伸长细胞。
(二)周围神经系统的胶质细胞
1.施万细胞 施万细胞(Schwann cell)是周围神经纤维的鞘细胞,它们排列成串,一个接一个地包裹着周围神经纤维的轴突。在有髓神经纤维,施万细胞形成髓鞘,是周围神经系统的髓鞘形成细胞。施万细胞外表面有一层基膜,在周围神经再生中起重要作用。
2.卫星细胞 卫星细胞(satellite cell)是神经节内包裹神经元胞体的一层扁平或立方形细胞,故又称被囊细胞。细胞核圆或卵圆形,染色较深。细胞外面有一层基膜。

神经纤维
神经纤维(nerve fiber)是由神经元的长突起外包胶质细胞所组成。包裹中枢神经纤维轴突的胶质细胞是少突胶质细胞,包裹周围神经纤维轴突的是施万细胞。根据包裹轴突的胶质细胞是否形成髓鞘(myelin sheath),神经纤维可分有髓神经纤维(myelinated fiber)和无髓神经纤维(unmyelinated nerve fiber)。神经纤维主要构成中枢神经系统的白质和周围神经系统的脑神经、脊神经和植物神经。
1.有髓神经纤维
(1)周围神经系统的有髓神经纤维:




神经纤维的轴突,除起始段和终末外均包有髓鞘。髓鞘分成许多节段,各节段间的缩窄部称郎氏结(Ranvier node)。轴突的侧支均自郎氏结处发出。相邻两个郎氏结之间的一段称结间体(internode)。轴突越粗,其髓鞘也越厚,结间体也越长。每一结间体的髓鞘是由一个施万细胞的胞膜融合,并呈同心圆状包卷轴突而形成的,电镜下呈明暗相间的同心状板层。髓鞘的化学成分主要是类脂和蛋白质,称髓磷脂(myelin)。髓磷脂中类脂含量很高,约占80%,故新鲜髓鞘呈闪亮的白色,但在常规染色标本上,因类脂被溶解,仅见残留的网状蛋白质。若标本用锇酸固定和染色,髓磷脂保存,髓鞘呈黑色,在其纵切面上常见一些漏斗型的斜裂,称施-兰切迹(Schmidt-Lantermann incisure)。
施万细胞的胞核呈长卵圆形,其长轴与轴突平行,核周有少量胞质。由于施万细胞包在轴突的外面,故又称神经膜细胞(neurilemmal cell),它的外面包有一层基膜。施万细胞最外面的一层胞膜与基膜一起往往又称神经膜(neurilemma),光镜下可见此膜。

髓鞘的形成:在有髓神经纤维发生中,伴随轴突一起生长的施万细胞表面凹陷成一纵沟,轴突位于纵沟内,沟缘的胞膜相贴形成轴突系膜(mesaxon)。轴突系膜不断伸长并反复包卷轴突,把胞质挤至细胞的内、外边缘及两端(即靠近郎氏结处),从而形成许多同心圆的螺旋膜板层,即为髓鞘。故髓鞘乃成自施万细胞的胞膜,属施万细胞的一部分。施万细胞的胞质除见于细胞的外、内边缘和两端外,还见于髓鞘板层内的施-兰切迹。该切迹构成螺旋形的胞质通道,并与细胞外、内边缘的胞质相通。
(2)中枢神经系统的有髓神经纤维:

其结构基本与周围神经系统的有髓神经纤维相同,不同的是它的髓鞘不是施万细胞,而是由少突胶质细胞突起末端的扁平薄膜包卷轴突而形成。一个少突胶质细胞有多个突起可分别包卷多个轴突,其胞体位于神经纤维之间。其次是中枢有髓神经的外表面没有基膜包裹,髓鞘内亦无施-兰切迹。
有髓神经的轴膜兴奋是呈跳跃式传导的,故传导速度快。
有髓神经纤维的髓鞘,因含高浓度类脂而具嫌水性,它不容带离子的水溶液通过而起绝缘作用。有髓神经纤维轴突的轴膜,除轴突起始段和轴突终末外,只有在郎氏结处才暴露于细胞外环境。其余大部分的轴膜均被髓鞘包裹。由于髓鞘的电阻比轴膜高得多,而电容却很低,通过轴突的电流只能使郎氏结处的轴膜去极化而产生兴奋。所以,从轴突起始段产生的神经冲动(动作电位)的传导,是通过郎氏结处的轴膜进行的,即从一个郎氏结跳到下一个郎氏结,呈快速的跳跃式传导。故而,结间体越长,跳跃的距离也越大,传导速度也就越快。
2.无髓神经纤维
(1)周围神经系统的无髓神经纤维:由较细的轴突和包在它外面的施万细胞组成。施万细胞沿着轴突一个接一个地连接成连续的鞘,但不形成髓鞘,故无郎氏结;而且一个施万细胞可包裹许多条轴突。施万细胞外面亦有基膜。

(2)中枢神经系统的无髓神经纤维:轴突外面没有任何鞘膜,因此是裸露的轴突,它们与有髓神经纤维混杂在一起。在一些脑区,它们可被星形胶质细胞的突起分隔成束。
无髓神经纤维因无髓鞘和郎区结,电流通过轴膜是沿着轴突连续传导的,故其传导速度比有髓神经纤维慢得多。
神经
周围神经系统的神经纤维集合在起,构成神经(nerve),分布到全身各器官和组织。
一条神经内可以只含有感觉(传入)神经纤维或运动(传出)神经纤维,但大多数神经是同时含有感觉、运动和植物神经纤维的。在结构上,多数神经同时含有髓和无髓两种神经纤维。由于有髓神经纤维的髓鞘含髓磷脂,故神经通常呈白色。

包裹在神经外面的致密结缔组织称神经外膜(epineurium)。神经内的神经纤维,又被结缔组织分隔成大小不等的神经纤维束,包裹每束神经纤维的结缔组织称神经束膜(perineurium)。神经束膜的外层是结缔组织,内层则由多层的扁平上皮细胞组成,称神经束膜上皮(perineural epithelium),上皮细胞之间有紧密连接,每层上皮都有基障进入神经内部。神经纤维束内的每条神经纤维又有薄层疏松结缔组织包裹,称神经内膜(endoneurium)。神经内的血管较丰富,神经外膜内的纵行血管发出分支进入神经束膜,进而在神经内膜形成毛细血管网。神经内膜亦含有淋巴管。
周围神经纤维的终末部分终止于全身各种组织或器官内,形成各式各样的神经末梢(nerve ending),按其功能可分感觉神经末梢和运动神经末梢两大类。
感觉神经末梢(sensory nerve ending)是感觉神经元(假单极神经元)周围突的终末部分,该终末与其他结构共同组成感受器。感受器能接受内、外环境的各种刺激,并将刺激转化为神经冲动,传向中枢,产生感觉。感觉神经末梢按其结构可分游离神经末梢和有被囊神经末梢两类。
1.游离神经末梢 游离神经末梢(free nerve ending)结构较简单。较细的有髓或无髓神经纤维的终末部分失去施万细胞,裸露的轴突末段分成细支,分布在表皮、角膜和毛囊的上皮细胞间,或分布在各型结缔组织内,如骨膜、脑膜、血管外膜、关节囊、肌腱、韧带、筋膜和牙髓等处。此类末梢感受冷、热、轻触和痛的刺激。

2.有被囊神经末梢 有被囊神经末梢(encapsulated nerve ending)外面均包裹有结缔组织被囊,它们的种类很多,常见的有如下几种:
(1)触觉小体(tactile corpuscle)又称Meissner小体,分布在皮肤真皮乳头内,以手指、足趾的掌侧皮肤居多,感受触觉,其数量可随年龄增长而减少。触觉小体呈卵圆形,长轴与皮肤表面垂直,外包有结缔组织囊,小体内有许多横列的扁平细胞。有髓神经纤维进入小体时失去髓鞘,轴突分成细支盘绕在扁平细胞间。


(2)环层小体(lamellar corpuscle):又称Pacinian小体,体积较大(直径1~4mm),卵圆形或球形,广泛分布在皮下组织、肠系膜、韧带和关节囊等处,感受压觉和振动觉。小体的被囊是由数十层呈同心圆排列的扁平细胞组成,小体中央有一条均质状的圆柱状。有髓神经纤维进入小体失去髓鞘,裸露轴突穿行于小体中央的圆柱体内。


(3)肌梭(muscle spindle):是分布在骨骼肌内的梭形小体,长约1~7mm,外有结缔组织被囊,内含若干条细小的骨骼肌纤维称梭内纤维(intrafusal muscle fiber)。梭内肌纤维的中段肌浆较多,肌原纤维较少,有些肌纤维的细胞核排列成串,有些肌纤维的细胞核聚集在中段而使中段膨大。感觉神经纤维进入肌梭时失去髓鞘,其轴突细支呈环状包绕梭内肌纤维的两端。肌梭是一种本体感受器,主要感受肌纤维的伸缩变化,在调节骨骼肌的活动中起重要作用。



运动神经末梢(motor nerve ending)是运动神经元的长轴突分布于肌组织和腺内的终末结构,支配肌纤维的收缩和腺的分泌。神经末梢与邻近组织共同组成效应器(effector)。运动神经末梢又分躯体和内脏运动神经末梢两类。
1.躯体运神经末梢(somatic motor nerve ending) 分布于骨骼肌内。神经元的胞体位于脊髓灰质前角或脑干,轴突很长,离开中枢神经系统后成为躯体传出(运动)神经纤维,其中小部分细有髓神经纤维供应肌梭内的梭内肌纤维,其余大部分粗有髓神经纤维均分布于骨骼肌(梭外肌)。有髓神经纤维抵达骨骼肌时失去髓鞘,其轴突反复分支,每一分支形成葡萄状终末与一条骨骼肌纤维建立突触连接,此连接区域呈椭圆形板状隆起,称运动终板(motor end plate)或神经肌连接(neuromuscular junction)。


一条有髓运动神经纤维支配的骨骼肌纤维数目多少不等,少者1~2条,多者可分支支配上千条;而一条骨骼肌纤维通常只有一个轴突分支支配。一个运动神经元的轴突及其分支所支配的全部骨骼肌纤维合称一个运动单位(motor unit)。

在电镜下,运动终板处的肌纤维含丰富的肌浆,有较多的细胞核和线粒体,肌纤维表面凹陷成浅糟,突终末嵌入浅糟内。糟底肌膜即突触后膜,它又凹陷成许多深沟和皱褶,使突触后膜的表面积增大,突触后膜上有乙酰胆碱N型受体。轴突终末与肌膜之间在的间隙为突触间隙,与肌膜相对的轴膜是突触前膜,它富含电位门控钙通道。轴突终末内有大量圆形突触小泡,内含神经递质乙酰胆碱。还有许多线粒体和一些微管、微丝等。当神经冲动到达运动终时,轴突终末突触前膜上的电位门控钙通道开放,Ca2+进入轴突终末内,促使突触小泡移附于突触前膜,并藉出胞作用释放其内的乙酰胆碱到突触间隙。大部分乙酰胆碱分子与肌膜(突触前膜)上的乙酰胆碱N型受体结合,引起与受体偶联的化学门控钠通道开放,大量Na+进入肌浆内,使肌膜两侧离子分布发生变化而产生兴奋,从而引起肌纤维的收缩。
2.内脏运动神经末梢(visceral motor nerve ending) 分布于内脏及血管平滑肌、心肌和腺细胞等处。这类神经纤维较细,无髓鞘,其轴突终末分支常呈串珠样膨体(varicosity),黏附于肌细胞表面或穿行于腺细胞之间,与效应细胞建立突触。膨体内有许多圆形或颗粒型突触小泡,圆形清亮突触小泡含乙酰胆碱,颗粒型突触小泡含去甲肾上腺素或肽类神经递质。
