1.项目背景
随着信息技术的迅猛发展和数字化媒体的普及,人们每天面临着海量的信息选择。特别是在线电影平台,如腾讯视频、爱奇艺、优酷等,拥有数以万计的电影资源。用户在如此庞大的电影库中寻找感兴趣的内容变得愈发困难,因此,一个高效、精准的推荐系统显得尤为重要。

传统的电影推荐方法,如基于流行度或者最新发布进行推荐,往往不能满足用户个性化的需求。为了提供更加个性化的电影推荐,推荐系统需要能够理解和预测用户的喜好。基于内容的推荐系统和协同过滤推荐系统是两种主流的方法。基于内容的推荐主要是通过分析用户过去的行为和电影的内容(如类型、导演、演员等)来推荐类似的电影。而协同过滤则是通过分析用户的行为和其他相似用户的行为来进行推荐。
然而,单一的推荐方法往往有其局限性。基于内容的推荐可能过于依赖电影的特征描述,而忽略了用户的个性化需求;而协同过滤则可能受限于数据的稀疏性和冷启动问题。为了克服这些问题,可以考虑将基于内容的推荐和协同过滤结合起来,形成一种混合推荐方法,即基于内容协同过滤的推荐系统。
本研究旨在构建一个基于内容协同过滤算法的电影推荐系统,通过结合电影的内容特征和用户的行为数据,为用户提供更加精准和个性化的电影推荐。通过这种方法,我们期望能够提高用户对推荐电影的满意度,并进一步提升在线电影平台的用户体验。
在上述背景下,本研究将深入探索内容协同过滤算法在电影推荐系统中的应用,以期为用户提供更加精准、个性化的电影推荐服务。

项目完整链接:https://blog.csdn.net/m0_64336780/article/details/137437770
2.数据集介绍
本数据集来源于Kaggle,原始数据集共有2个文件,一个是movies.csv,一个是credits.csv。
3.完整代码与数据:


拓展:电影票房分析https://blog.csdn.net/m0_64336780/article/details/142043631?spm=1001.2014.3001.5502
春节电影票房https://blog.csdn.net/weixin_42363541/article/details/143215798?spm=1001.2014.3001.5502

