三、气体运输
(一)O2的运输
正常情况下,在血液中运输的O2中的97%是以与红细胞内血红蛋白相结合的方式存在,其余3%以单纯物理溶解方式存在。
1.O2与血红蛋白的可逆性结合
血红蛋白分子量为6,4000-6,7000道尔顿,所以1g血红蛋白可结合1.34-1.39 mL的O2。100 mL血液中的血红蛋白所能结合的最大O2量,称为血红蛋白氧容量。如果每100 mL血液含血红蛋白14g,则血红蛋白氧容量为18.8-19.5 mL。实际结合的O2量,称为血红蛋白氧含量。血红蛋白氧含量和血红蛋白氧容量的百分比,称为血红蛋白氧饱和度。由于血液中O2的物理溶解量极少,可忽略不计,因此血红蛋白氧含量、血红蛋白氧容量、血红蛋白氧饱和度分别可被看作是血氧含量、血氧容量、血氧饱和度(oxygen saturation)。
2.氧解离曲线
§微课5:氧解离曲线
氧解离曲线(oxygen dissociation curve)是表示O2分压与血红蛋白氧结合量或血红蛋白氧饱和度关系的曲线。
从氧解离曲线可以看出,血O2分压从40 mmHg上升到100 mmHg时血红蛋白氧饱和度从75%升高到97%,血氧含量从15 mL/100 mL升高到19.4 mL/100mL(设血红蛋白氧容量为20 mL/100 mL),即每100 mL血液增加结合了4.4 mL O2。血O2分压从100 mm Hg下降到40 mm Hg时血红蛋白氧饱和度从97%下降到75%,血氧含量从19.4mL/100mL下降到15 mL/100 mL,即每100mL血液释放了4.4 mL O2。可见在一般情况下每100 mL的血液可以将4.4 mL的O2运输到外周组织。氧解离曲线下段(O2分压10-40 mm Hg)是曲线坡度最陡的一段。O2分压稍有变化即引起血红蛋白氧饱和度大幅度变化。氧解离曲线上段坡度平缓,O2分压从100 mm Hg上升或下降几十个mmHg时血红蛋白氧饱和度的变化仅在10个百分点左右。这使得肺泡气或吸入的空气O2分压在较大范围内变化时不影响O2的运输。
3.影响氧解离曲线的因素
血红蛋白与O2的结合和解离受众多因素的影响,表现为氧解离曲线位置的偏移。其中生理因素有:温度、血CO2分压、pH、2,3-二磷酸甘油酸(DPG)等。

(1)CO2分压和pH的影响:CO2升高或pH降低均可使血红蛋白和O2的亲和力降低,氧解离曲线右移。CO2降低或pH升高则导致血红蛋白和O2的亲和力增高,氧解离曲线左移。pH对血红蛋白氧亲和力的这种影响称为波尔效应(Bohr effect)。
(2)温度的影响:温度升高时氧解离曲线右移,温度降低时左移。组织代谢增强时产热增加,温度升高。氧解离曲线的右移有利于血红蛋白与O2的解离,增加组织供氧以适应代谢的需要。
(3)DPG的影响:DPG是红细胞无氧糖酵解的产物,能降低血红蛋白与O2的亲和力,使氧解离曲线右移。
(二)CO2的运输(见教材)。
§微课6:二氧化碳在血液中的运输
化学结合占95%,形成碳酸氢盐而运输是主要形式。


