什么是中心极限定理(Central Limit Theorem)
中心极限定理指的是给定一个任意分布的总体。我每次从这些总体中随机抽取 n 个抽样,一共抽 m 次。 然后把这 m 组抽样分别求出平均值。 这些平均值的分布接近正态分布。
我们先举个栗子
现在我们要统计全国的人的体重,看看我国平均体重是多少。当然,我们把全国所有人的体重都调查一遍是不现实的。所以我们打算一共调查1000组,每组50个人。 然后,我们求出第一组的体重平均值、第二组的体重平均值,一直到最后一组的体重平均值。中心极限定理说:这些平均值是呈现正态分布的。并且,随着组数的增加,效果会越好。 最后,当我们再把1000组算出来的平均值加起来取个平均值,这个平均值会接近全国平均体重。
其中要注意的几点:
总体本身的分布不要求正态分布
上面的例子中,人的体重是正态分布的。但如果我们的例子是掷一个骰子(平均分布),最后每组的平均值也会组成一个正态分布。(神奇!)
样本每组要足够大,但也不需要太大
取样本的时候,一般认为,每组大于等于30个,即可让中心极限定理发挥作用。
···标准差(Standard Deviation,SD)和标准误差(Standard Error,SE)···
概念不同;标准差是描述观察值(个体值)之间的变异程度;标准误是描述样本均数的抽样误差;
用途不同;标准差与均数结合估计参考值范围,计算变异系数,计算标准误等。标准误用于估计参数的可信区间,进行假设检验等。
它们与样本含量的关系不同:当样本含量n足够大时,标准差趋向稳定;而标准误随n的增大而减小,甚至趋于0 。
【举例】:
有一个学校,学校中共有1000名学生,则这1000名学生可以作为这个学校学生的总体。如果我想了解所有学生的身高,采用随机抽样,抽取了50人。这50人就是一个样本。这里需要注意:一个样本并不是指一个人,而是指一次抽样。一个样本可以是1个人,也可以是100人,这里的1和100就是样本大小。
从理论上讲,抽样误差表示这样的意思:即如果不止抽样一次,而是抽样10次,每次都50人,那么我就有10个均数和标准差。例如大圈套有十个小圈,大圈代表总体1000人,一个小圈代表一个样本,即50人。每个样本都能计算计算一个均数和标准差。
以这10个均数作为原始数据,仍然能计算出一个均数和标准差,以这10个均数计算出的标准差就称之为标准误。这是理论上的含义,实际的含义就代表抽样误差的大小,即抽取的样本代表性好不好,抽样误差越小,代表性越好,反之,代表性越差。
如果我对学校中的1000人都测量了身高,那理论上就没有标准误,也就是没有抽样误差了,因为我测量了总体,这时就不存在标准误了。但是标准差是存在的,因为这1000人的身高肯定不同,肯定会有波动。这里就充分表明了标准差和标准误的区别了。
【SD和SE的另解】:
标准差计算的是一组数据偏离其均值的波动幅度,不管这组数是总体数据还是样本数据。你看standard deviation,说的就是“偏离”,只是在翻译为中文时,失去了其英文涵义。
而标准误,衡量的是我们在用样本统计量去推断相应的总体参数(常见如均值、方差等)的时候,一种估计的精度。样本统计量本身就是随机变量,每一次抽样,都可以根据抽出的样本情况计算出一个不同的样本统计量值。理论上来讲,从既定的总体中按照既定的样本规模n,穷尽所有可能抽出的样本(不妨假设为NN),根据这些样本可以计算出NN个样本统计量值,把这些统计量值分组绘成直方图(X轴为分组的统计量数值,Y轴为落在某一分组区间内的频率),则这个直方图就反应了样本统计量的分布情况(即抽样分布)。既然是分布,当然就有均值和方差。如果所有可能的样本统计量值的平均值就是总体均值,这就是无偏估计。如果所有可能的样本统计量值的方差在所有用于估计总体参数的统计量里最小,这就是有效估计。因此,抽样分布的标准差(也就是标准误)越小,则用样本统计量去估计总体参数时,精度就越高。所以,你明白为什么叫标准误(standard error)了。一般意义上讲,standard error反映的是用样本统计量去估计总体参数的时候,可能发生的平均“差错”
不妨这么理解吧,如果总体平均值是160,抽样误差是5,就是说用抽得的样本平均数去推断总体平均数时,平均差错可能在5左右;如果抽样误差是3,精度当然就比5要高啦。不同的总体、不同的样本规模,这个精度当然是不同的。如果总体的变异本身很小(也就是总体标准差小),样本规模越大,这种情况下精度当然就高啦。另外,根据大数定律,当样本规模大到一定程度的时候,不管总体是什么分布,样本平均数都会近似服从正态分布,这就为计算抽样误差(标准误)提供了理论依据。
最后总结:标准差还是标准误,注意看其英文原意,就可以把握个八九不离十了。本质上二者是同一个东西(都是标准差),但前者反映的是一种偏离程度,后者反映的是一种“差错”,即用样本统计量去估计总体参数的时候,对其“差错”大小(也即估计精度)的衡量。