数字图像处理

周洪成

目录

  • 1 第一单元 绪论
    • 1.1 第一课时 图像和数字图像处理
    • 1.2 第二课时 数字图像处理相关概念
    • 1.3 第三课时 数字图像处理面临的问题
  • 2 第二单元 数字图像处理基础
    • 2.1 第一课时 色度学基础与颜色模型
    • 2.2 第二课时 数字图像的生成与表示
    • 2.3 第三课时 数字图像的数值描述
  • 3 第三单元 图像基本运算
    • 3.1 第一课时 图像几何变换
    • 3.2 第二课时 图像代数运算
    • 3.3 第三课时 邻域及模板运算
  • 4 第四单元 图像的正交变换
    • 4.1 第一课时 离散傅里叶变换
    • 4.2 第二课时 离散余弦变换
    • 4.3 第三课时 K-L变换
  • 5 第五单元 图像增强
    • 5.1 第一课时 基于灰度级变换的图像增强
    • 5.2 第二课时 直方图均衡化方法
    • 5.3 第三课时 基于照度反射模型的图像增强
    • 5.4 第四课时 基于模糊技术的图像增强
    • 5.5 第五课时 基于伪彩色处理的图像增强
  • 6 第六单元 图像平滑
    • 6.1 第一课时 图像中的噪声
    • 6.2 第二课时 空间域平滑滤波
    • 6.3 第三课时 频域平滑滤波
  • 7 第七单元 图像锐化
    • 7.1 第一课时 图像边缘分析
    • 7.2 第二课时 微分算子
    • 7.3 第三课时 高斯滤波与边缘检测
    • 7.4 第四课时 频域高通滤波
  • 8 第八单元 图像复原
    • 8.1 第一课时 图像退化模型
    • 8.2 第二课时 图像退化函数的估计
    • 8.3 第三课时 图像复原的代数方法
    • 8.4 第四课时 典型图像复原方法
    • 8.5 第五课时 盲去卷积复原-
    • 8.6 第六课时 几何失真校验
  • 9 第九单元 图像的数学形态学处理
    • 9.1 第一课时 形态学基础
    • 9.2 第二课时 二值形态学的基础运算
    • 9.3 第三课时 二值图像的形态学处理
    • 9.4 第四课时 灰度形态学的运算
  • 10 第十单元 图像分割
    • 10.1 第一课时 阈值分割
    • 10.2 第二课时 边界分割
    • 10.3 第三课时 区域分割
    • 10.4 第四课时 基于聚类的图像分割
    • 10.5 第五课时 分水岭分割
  • 11 第十一单元 图像描述与分析
    • 11.1 第一课时 特征点+几何描述
    • 11.2 第二课时 形状描述+边界描述
    • 11.3 第三课时 矩描述+纹理描述
  • 12 第十二单元 图像编码
    • 12.1 第一课时 图像压缩编码的基本概念
    • 12.2 第二课时 图像的无损编码
    • 12.3 第三课时 霍夫曼编码+算术编码
    • 12.4 第四课时 图像的有损编码
    • 12.5 第五课时 变换编码+JPEG
第一课时 图像和数字图像处理

1.1图像和数字图像处理

1.1.1视觉与图像

  视觉

  人类观察世界和认知世界的重要手段。

  人类从外界获得的信息绝大部分是由视觉获取的。视觉信息量大,人类对视觉信息的利用率高,视觉功能很重要。

 图像:可见光成像和非可见光成像。

  非可见光成像:红外成像、X射线成像、紫外线成像(举例)

1.1.2图像的表示

(1)函数表示

   图像是二维信号,定义为二维函数f(x,y),其中,x、y是空间坐标,f(x,y)是点(x,y)的幅值。

   视频,又称动态图像,是多帧位图的有序组合,用三维函数f(x,y,t)表示,其中,t为时间变量,f(x,y,t)是t时刻那一帧点(x,y)的幅值。

(2)模拟图像

   通过客观的物理量表现颜色的图像,如照片、印刷品、画等,空间坐标值(x,y)及每点的光强f连续,无法用计算机处理。

(3)数字图像

   数字图像由有限的元素组成,每一个元素的空间位置(x,y)和强度值f都被量化成离散的数值,这些元素称为像素。二维像素矩阵,矩阵中每一个点具有一种颜色。