微课视频
隧道开挖前,通过超前预报,及时发现异常情况,预报掌子面前方不良地质体的位置、产状及其围岩结构的完整性与含水的可能性,为正确选择开挖断面、支护设计参数和优化施工方案提供依据,并为预防隧洞涌水、突泥、突气等可能形成的灾害性事故及时提供信息,使工程单位提前做好施工准备,保证施工安全。超前地质预报是如何开展的呢?让我们通过微课视频来学习吧!
学习任务单
一、学习指南
1.课题名称:超前地质预报
2.达成目标
通过观看教学视频、参考学习教材等方法,熟悉‘自主学习任务单’给出的超前地质预报基本定义、预报方法分类等知识。
3.学习方法建议
(1)学习《隧道工程》、《工程物体技术》等教材
(2)查阅隧道施工图纸和施工规范
二、学习任务
通过观看教学视频自学(或阅读教材、分析提供的学习资源),完成下列学习任务:
(1)什么叫超前地质预报?
(2)超前地质预报的特点有哪些?
(3)常见超前地质预报的分类有哪些?
(4)地质雷达法和TSP预报法的基本原理是什么?有何应用特点?
三、困惑与建议
此项由学生自主学习之后在平台上留言、提问,教师及时解答。
学习内容
本单元需要同学们了解新奥法施工中超前地质预报,需要大家掌握不同超前地质预报的技术和方法,并且能够根据不同隧道的超前地质预报方案进行隧道施工方案设计。

任务导语
隧道超前地质预报,指的是在隧道开挖前及施工过程中对隧道周围及掌子面前方的地质情况进行探测,识别和预测隧道掌子面前方及周围的工程地质、水文地质结构,提供准确的断裂带、含水带及岩体工程类别等地质参数,能有效地避免工程地质病害、减少处治费用、确保施工安全和进度,节约成本。
超前地质预报常用的物探方法有很多,分类不尽相同。本节课就让我们一起来看看如何进行隧道的超前地质预报吧。
电子课件
虚拟仿真实训指导
同学们可以进入《隧道施工与维护》在线课程“资料”模块,下载虚仿软件进行虚拟仿真实训,本次实训的内容是超前地质预报作业,大家可以看完下面的虚仿实训指导视频,自主训练。
实训作业指导书
完成了虚拟仿真实训后,同学们可以一起进入到国家级高铁实训中心进行现场实训,下面是超前地质预报作业指导书,请大家查收。
下图为校企联合实训基地全真隧道。

技术篇——什么是超前地质预报?
前面大家学习了超前地质预报的原理和作用,让我们一起看看地震波反射法、水平声波剖面法、地质雷达法之间的区别吧~
工程篇——盾构隧道施工超前地质预报的应用案例
下面是一个工程案例,请大家学习一下在实际工程中是如何进行超前地质预报的吧。
◆现状与需求
从1818年法国工程师M.I.布吕内尔观察蛀虫在木板内分泌粘液掘进钻洞而受到启发,发明敞开式手动掘进技术开始,经过200多年的发展,盾构施工技术日趋完善,广泛应用于地下空间施工工作中。

然而,盾构施工对隧道地质条件要求较高,施工中主要存在的地质问题为球状风化体(孤石)和软土地层。残积土中的孤石是盾构隧道施工中独特的地质灾害,孤石会使盾构机刀盘瞬间荷载突然加大,容易造成刀盘变形和刀具的严重损坏,易产生卡刀、崩刀、刀具偏磨等现象,严重影响施工进度或增加建设成本。

因此在盾构施工过程中应进行超前地质预报工作。
盾构施工中,盾构机械及掌子面全程处于工作状态,很难采取前进方向的机械探测或电磁波探测(后者也有例外,如“德国BEAM盾构机掘进过程实时隧道地质超前预报技术服务”),能够运用于盾构施工中的超前地质预报方法有限。目前主要的探测手段,均为通过围岩利用地震反射波对盾构前方构造进行探测,或者在地面,对前进方向通过钻孔,地震,电法等方法进行提前探测,本文所介绍的地震波跨孔层析成像(CT)即为地面提前探测方法之一。
用跨孔地震CT层析成像技术对地铁盾构隧道区间地层进行高精度的探测,获取测试孔间的地层信息和不良地质体分布情况,从而达到对盾构隧道施工超前地质预报的目的。
◆技术原理
地震波跨孔层析成像(C T ) 是一种地下物探方法。测试前在测试目标区两侧钻孔成井,在井下进行地震波的激发和接收,通过对观测到的弹性波各种震相的运动学(走时、射线路径)和动力学(波形、振幅、相位、频率)资料的分析,进而反演地下介质的结构、速度分布及其弹性参数等重要信息,该方法通常可用于探测规模小,要求精度高的地下介质细结构。

在实际操作中,一般采取一发多收扇形穿透的形式,一个孔内放置高频声源(例如电火花震源)。另一个孔内固定住一串检波器(水听器),通过震源向井下移动并在每一处理想的深度位置逐点激发,释放地震波,在被测区域内形成密集的射线交叉网络,地震波被记录下来,且波的旅行时被确定。基于所有旅行时,一幅高分辨率的声速图被计算出来。
这时可认为每个成像单元的地质介质是均匀的,波速是单一的,再运用适当的反演算法即可精确地获得异常体的展布形态。
◆工程概况与测点布设
地测试区域位于福州地铁1号线某隧道区间。根据前期勘察结果,区域地层从上到下依次为:
人工素填土:成分杂乱,含碎石,厚0~3m;
第四系海积淤泥质土:可塑-流塑,厚度为0~15m;
花岗岩残积土:可塑-硬塑,具有原岩结构,长石部分风化,砂感强,含孤石,粒径在0.5^5m;
区域地下水埋藏较浅,一般为地面以下3~5m。地铁区间隧道在测试区域内顶板设计埋深为18m,底板标高为地面以下25m。
在前期地铁隧道勘察过程中发现,部分区域在隧道顶板上方存在软土地层,但由于仅是部分钻孔揭露,无法完全判断软土地层分布;盾构机在上软下硬地层中易产生姿态不稳、机体易被卡、围岩喷涌、拱顶易坍塌、地面沉降不可控等问题。
地震波测试孔沿盾构隧道中心线布设,平面上每10-15m布设一处钻孔,钻孔深度要求穿越隧道底板以下5m。区域内共布设ZK1-ZK4共4处测孔,其中ZK1、ZK3为激发孔,ZK2、ZK4钻孔为接收孔。测试区间总长度为36.5m。

测试孔采用轻型钻机钻孔,埋设75mmPVC管防止塌孔,管底密封,管周采用细沙回填。管内灌注清水,以便使地震波震源能与管壁有效耦合。
◆参数设置
如下图所示,跨孔地震层析成像系统主要由震源系统(脉冲发生器+电火花探头),孔中接收器(水听器阵列)和地震仪组成。

本案例中地震波激发采用P波放电激发探头,使用5000V电火花震源,激发能量1000焦耳,激发点距为0.5m。地震波接收采用24道检波器串,每个检波器间距为1m。探测过程中,在激发探头从孔底至孔口完成一组激发作业后,将接受检波器串探头抬升0.5m,并将激发探头再次放置于孔底,重新进行探测任务。从而使接收点距到达0.5m。
◆探测效果与验证
根据钻孔得出地层结果,区域主要存在花岗岩残积土、淤泥质土和孤石3种地质单元。根据以往探测结果,淤泥质土属于软土类型,地震波波速一般低于1000m/s,花岗岩残积土地震波波速区间为1000-1800m/s,花岗岩球状风化体(孤石)强度接近于中风化母岩,因此波速一般高于2500m/s。根据跨孔CT扫描成果揭示钻孔间波速值差异,判断孤石及淤泥质土层分布如下图所示。

探测区域内主要存在A、B两处孤石区域,孤石形态呈条状,孤石区域A长约10m,宽约3m。孤石区域B宽度可达4m,长度约15m,其中,孤石A位于隧道区间界限内,将会对隧道施工产生影响。
为检验测试成果准确度,在ZK1与ZK2钻孔间布设一处检验孔X8。由于ZK1钻孔地层较为单一,取X8与ZK2两组地层编录数据作为参照标准。

根据表1、2结果,地震波跨孔CT探测对于淤泥质土及孤石的区位判断效果较好,最大误差仅为0.25m,满足施工过程中对不良地质体定位的需要。
其中,地震波跨孔CT探测对于孤石的预报效果要优于淤泥质土,推测原因主要有两点:1.孤石与周围残积土的弹性波波速差值较淤泥质土大;2.淤泥质土位于地表,受地面环境影响较大。
结论
地震波跨孔CT层析成像技术在某地铁隧道区间的测试结果精度较高,对于地下孤石、软土地层等不良地质体的探测能够满足隧道施工需求,可应用于盾构隧道超前地质预报工作中。
地震波跨孔CT层析成像技术探测成果受探测目标与周围环境的P波传播速度差值影响较大。加上地面环境的影响,该方法对于孤石的探测效果要优于对淤泥质土。
受地震波传播路径覆盖面积影响,远离接收孔地层探测信息量大,信息可靠度较髙,探测精度均要优于靠近激发或接收孔地层。
目前,地震波跨孔CT层析成像对数据的处理和反演仍存在主观性较强的问题。数据反演结果的真实性和有效性直接影响目标体的探测精度,尤其是目标体范围的探测。在这方面需要提升探测数据处理计算的研究水平。
◆使用设备
本案例中,震源系统和接收器均为德国Geotomographie公司产品,其中供能器为IPG5000型脉冲发生器,孔中震源为SBS42孔中P波震源,震源系统输入电压5000V,输出能量1000J,具有充电迅速(最快8次/分),信号稳定,探测深度大(最大400m)等特点,无论单炮探测还是叠加激发,信号极为稳定,非常适合工程勘测中使用,接收器为BHC4孔中水听器链,该型号2022年已更新为BHC5,具有精度高,使用深度大(500m)等特点,且自带信号检测功能。相关产品具体性能详见欧美大地官网。

IPG5000脉冲发生器
SBS42孔中P波震源

BHC5水听器链